摘要
研究了基于马氏田口度量的滚动轴承故障诊断特征变量降维优化问题,提出一种新的混合马氏田口系统变量筛选方法。首先,计算马氏田口距离误分类率的加权和,建立变量筛选的混合整数线性规划模型;其次,运用Gompert二进制粒子群优化算法求解最优的滚动轴承故障诊断特征变量组合;最后,与标准二进制粒子群优化算法和二进制蚁群优化算法进行对比,结果表明,该方法能显著提高滚动轴承故障识别准确率和计算效率。
Studies the dimensionality reduction optimization of Mahalanobis-Taguchi system variables.A new method of variable selection for hybrid Mahalanobis-Taguchi system is proposed.Firstly,calculate the weighted sum of the Mahalanobis-Taguchi distance misclassification rate,and establish a mixed integer linear programming model for variable selection.Then,the Gompert binary particle swarm optimization algorithm is applied to solve the optimal variable combination.Finally,takes the fault diagnosis of rolling bearing as an example and compares it with the standard binary particle swarm optimization algorithm and binary ant colony optimization algorithm.
作者
颜会娟
郑锐
张信哲
丁晓彬
刘久富
Yan Huijuan;Zheng Rui;Zhang Xinzhe;Ding Xiaobin;Liu Jiufu(Department of Information Engineering,Zhengzhou Polytechnic Vocational College,Zhengzhou 450000,China;College of Electronic Science and Engineering,Southeast University,Nanjing 210016,China)
出处
《现代制造工程》
CSCD
北大核心
2020年第10期114-119,共6页
Modern Manufacturing Engineering
基金
国家自然科学基金项目(61473144)。
关键词
马氏田口系统
变量降维
Gompert二进制粒子群
优化
故障诊断
Mahalanobis-Taguchi system
variable dimensionality reduction
Gompert binary particle swarm
optimization
fault diagnosis