期刊文献+

稀疏回归和流形学习的无监督特征选择算法 被引量:2

Unsupervised feature selection algorithm based on sparse regression and manifold learning
下载PDF
导出
摘要 针对无标签高维数据的大量出现,对机器学习中无监督特征选择算法进行了研究。提出了一种结合自表示相似矩阵和流形学习的无监督特征选择算法。首先,通过数据的自表示性质,构建相似矩阵,结合低维流形能够表示高维数据结构这一流形学习思想,建立一种考虑流形学习的无监督特征选择优化模型。其次,为了保证选择到更有用及更稀疏的特征,采用l2,1范数对优化模型进行约束,使特征之间相互竞争,消除冗余。进而,通过变量交替迭代对优化模型进行求解,并证明了算法的收敛性。最后,通过与其他几个无监督特征算法在四个数据集上的对比实验,证明了所提算法的有效性。 In view of the large number of unlabeled high-dimensional data,this paper studied unsupervised feature selection in machine learning,and proposed an unsupervised feature selection algorithm combining self-representation similarity matrix and manifold learning. Firstly,it constructed the similarity matrix by the self-expressiveness property of the data. Based on the idea that low-dimensional manifold could represent high-dimensional data structures,it established an unsupervised feature selection optimization model considering manifold learning. Secondly,in order to ensure the selection of more useful and sparse features,it used the l2,1 norm to constrain the optimization model,so that features competed with each other and eliminated redundancy. Furthermore,it solved the optimization model by alternating iteration of variables,and proved convergence of the algorithm. Finally,it demonstrated the effectiveness of the proposed algorithm by comparison with other unsupervised feature algorithms on four data sets.
作者 周婉莹 马盈仓 郑毅 杨小飞 Zhou Wanying;Ma Yingcang;Zheng Yi;Yang Xiaofei(School of Science,Xi’an Polytechnic University,Xi’an 710048,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第9期2634-2639,共6页 Application Research of Computers
基金 国家自然科学基金资助项目(11501435) 陕西省教育厅科研计划资助项目(18JS042) 西安工程大学研究生创新基金资助项目(chx2019057)。
关键词 无监督学习 特征选择 稀疏回归 特征流形学习 unsupervised learning feature selection sparse regression feature manifold learning
  • 相关文献

参考文献4

二级参考文献19

  • 1Wu Xin-dong, Kui Yu, Wei Ding, et al. Online feature selection with streaming features[J]. Pattern Analysis and Machine Intelligence, 2012, 35(5): 1178-1192.
  • 2Felipe A A, Jos6L R, Alfredo R M, et al. Feature selection using support vector machines and bootstrap methods for ventricular fibrillation detection[J]. Expert Systems with Applications, 2012, 39(2): 1956-1967.
  • 3Yang Yi, Ma Zhi-gang, Hauptmann A G, et al. Feature selection for multimedia analysis by sharing information among multiple tasks[J]. IEEE Trans on Multimedia, 2013, 15(3): 661-669.
  • 4Liu J. Feature dimensionality reduction for myoelectric pattern recognition: A comparison study of feature selection and feature projection methods[J]. Medical Engineering and Physics, 2014, 36(12): 1716-1720.
  • 5Fan B J, Cong Y, Du Y K. Discriminative multi-task objects tracking with active feature selection and drift correction[J]. Pattern Recognition, 2014, 47(12): 3828- 3840.
  • 6Guyon I, Jason W, Stephen B, et al. Gene selection for cancer classification using support vector machines[J]. Machine Learning, 2002, 46(1/2/3): 389-422.
  • 7Michalak K, Kwasnicka H. Correlation-based feature selection strategy in classification problems[J]. Int J of Applied Mathematics and Computer Science, 2006, 16(4): 503-511.
  • 8He X F, Cai D, Niyogi P. Laplacian score for feature selection[C]. Advances in Neural Information Processing Systems. Vancouver, 2005: 507-514.
  • 9Nie F P, Xiang S M, Jia Y Q, et al. Trace ratio criterion for feature selection[C]. Proc of the 23th AAAI Conf on Artificial Intelligence. Chicago: 2008: 671-676.
  • 10Cai D, Zhang C Y, He X E Unsupervised feature selection for multi-cluster data[C]. Advances in Neural Information Processing Systems. Washington, 2010: 333-342.

共引文献9

同被引文献7

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部