期刊文献+

基于自适应权重的RFID室内定位算法 被引量:1

RFID Indoor Positioning Algorithm Based on Adaptive Weight
下载PDF
导出
摘要 针对复杂环境下室内定位稳定性差和误差大的问题,提出基于自适应权重的RFID室内定位算法.根据误差分布特性,采用马氏距离构造基于正态分布的权重函数,自适应赋予每个样本不同的权重;对加权最小二乘支持向量机建立惩罚系数和核函数参数组合的目标函数;采用粒子群优化算法(PSO)优化最优目标函数,利用混沌粒子的随机性和遍历性,将混沌寻优的最优解代替粒子群寻优的最优解,避免陷入局部最优,提高定位精度.仿真实验结果表明,该算法在室内定位中精度更高,定位更稳定. Aiming at the problem of poor indoor positioning stability and large error in a complex environment,this study proposed an RFID indoor positioning algorithm based on adaptive weight.According to the error distribution characteristics,a weight function was constructed based on a normal distribution with Mahalanobis distance to adaptively assign different weights to each sample.The weighted least squares support vector machine was used to establish the objective function of the combination of the penalty coefficient and kernel function parameters.The particle swarm optimization algorithm(PSO)was used to optimize the optimal objective function,and the randomness and ergodicity of chaotic particles were used to replace the optimal solution of particle swarm optimization with chaos optimization and to avoid falling into local optimum,thus increasing the positioning accuracy.Simulation experiment results showed that the proposed algorithm had higher accuracy and more stable positioning in indoor positioning.
作者 田清 武斌 王丽 TIAN Qing;WU Bin;WANG Li(School of Computer and Information Engineering,TCU,Tianjin 300384,China)
出处 《天津城建大学学报》 2020年第4期296-301,共6页 Journal of Tianjin Chengjian University
基金 国家自然科学基金(61902273) 天津市自然科学基金项目(17JCQNJC00500) 天津市科技特派员项目(18JCTPJC62800,18JCTPJC60900) 天津市教委项目(2016CJ12)。
关键词 室内定位 自适应权重 正态分布 加权最小二乘支持向量机 混沌粒子群算法 indoor positioning adaptive weight normal distribution weighted least squares support vector machine chaotic particle swarm optimization
  • 相关文献

参考文献3

二级参考文献35

  • 1徐凤燕,石鹏,王宗欣.基于参数拟合的距离—损耗模型室内定位算法[J].电路与系统学报,2007,12(1):1-5. 被引量:10
  • 2Munoz D, Bouchereau F, and Vargas C, et al.. Position Location Techniques and Applications[M]. Burlington, USA, Academic Press, 2009: 17-21.
  • 3Gu Y Y, Lo A, and Niemegeers I. A survey of indoor positioning systems for wireless personal networks[J]. IEEE Communications Surveys & Tutorials, 2009, 11(1): 13-32.
  • 4Mengual L, Marbn O, and Eibe S. Clustering-based location in wireless networks[J]. Expert Systems with Applications, 2010, 36(4): 7552-7561.
  • 5Brunato M and Battiti R. Statistical learning theory for location ngerprinting in wireless LANs[J]. Computer Networks, 2005, 47(6): 825-845.
  • 6Bahl P and Padmanabhan V N. RADAR: An in-building RF-based user location and tracking system[C]. Proc. IEEE INFOCOM, Tel Aviv, Israel, 2000: 775-784.
  • 7Carlos K F, Inmaculada M J, and Alicia G C, et al.. Nonparametric model comparison and uncertainty evaluation for signal strength indoor location[J]. IEEE Transactions on Mobile Computing, 2009, 8(9): 1250-1264.
  • 8Chen K Y, Yang Q, and Yin J, et al.. Power-efficient access-point selection for indoor location estimation[J]. IEEE Transactions on Knowledge and Data Engineering, 2006,18(7): 877-888.
  • 9Kushki A, Plataniotis K, and Venetsanopoulos A. Intelligent dynamic radio tracking in indoor wireless local area networks[J]. IEEE Transactions on Mobile Computing, 2010, 9(3): 405-419.
  • 10Fang S H, Lin T N, and Lin P. Location fingerprinting in a decorrelated space[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(5): 685-691.

共引文献62

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部