期刊文献+

Differentially Private Precision Matrix Estimation 被引量:1

原文传递
导出
摘要 In this paper, we study the problem of precision matrix estimation when the dataset contains sensitive information. In the differential privacy framework, we develop a differentially private ridge estimator by perturbing the sample covariance matrix. Then we develop a differentially private graphical lasso estimator by using the alternating direction method of multipliers(ADMM) algorithm.Furthermore, we prove theoretical results showing that the differentially private ridge estimator for the precision matrix is consistent under fixed-dimension asymptotic, and establish a convergence rate of differentially private graphical lasso estimator in the Frobenius norm as both data dimension p and sample size n are allowed to grow. The empirical results that show the utility of the proposed methods are also provided.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2020年第10期1107-1124,共18页 数学学报(英文版)
基金 National Natural Science Foundation of China(Grant Nos.11571011 and U1811461) the Open Research Fund of KLATASDS-MOE the Fundamental Research Funds for the Central Universities。
  • 相关文献

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部