摘要
人体行为识别领域的研究方法大多数是从原始视频帧中提取相关特征,这些方法或多或少地引入了多余的背景信息,从而给神经网络带来了较大的噪声.为了解决背景信息干扰、视频帧存在的大量冗余信息、样本分类不均衡及个别类分类难的问题,本文提出一种新的结合目标检测的人体行为识别的算法.首先,在人体行为识别的过程中增加目标检测机制,使神经网络有侧重地学习人体的动作信息;其次,对视频进行分段随机采样,建立跨越整个视频段的长时时域建模;最后,通过改进的神经网络损失函数再进行行为识别.本文方法在常见的人体行为识别数据集UCF101和HMDB51上进行了大量的实验分析,人体行为识别的准确率(仅RGB图像)分别可达96.0%和75.3%,明显高于当今主流人体行为识别算法.
Most of the research methods in the field of human action recognition extract relevant features from the original video frames.These methods introduce more or less redundant background information,which brings more noise to the neural network.In order to solve the problem of background information interference,large amount of redundant information in video frames,unbalanced sample classification and difficult classification of individual classes,this paper proposes a new algorithm for human action recognition combined with object detection.Firstly,the object detection mechanism is added in the process of human action recognition,so that the neural network has a focus on learning the motion information of the human body.Secondly,the video is segmentally and randomly sampled to establish long-term time domain modeling across the entire video segment.Finally,action recognition is performed through an improved neural network loss function.In this work,a large number of experimental analyses are performed on the popular human action recognition datasets UCF101 and HDBM51.The accuracy of human action recognition(RGB images only)is 96.0%and 75.3%,respectively,which is significantly higher than the state-of-the-art human action recognition algorithms.
作者
周波
李俊峰
ZHOU Bo;LI Jun-Feng(Institute of Automation,Faculty of Mechanical Engineering and Automation,Zhejiang Sci-Tech University,Hangzhou 310018)
出处
《自动化学报》
EI
CSCD
北大核心
2020年第9期1961-1970,共10页
Acta Automatica Sinica
基金
国家自然科学基金(61374022)
浙江省基础公益研究计划项目(LGG18F030001)
金华市科学技术研究计划重点项目(2018-1-027)资助。
关键词
深度学习
行为识别
卷积神经网络
机器视觉
目标检测
Deep learning
action recognition
convolutional neural network(CNN)
computer vision
object detection