期刊文献+

基于DKNPE方法半导体蚀刻过程健康状态监视

Health status monitoring based on DKNPE for semiconductor etch processes
下载PDF
导出
摘要 针对传统方法对非线性或多模态间歇过程的故障检测率低的问题,提出一种基于K近邻邻域保持嵌入得分差分(difference of K nearest neighbors score associated with neighborhood preserving embedding,DKNPE)的健康状态监视方法。首先,通过NPE方法计算训练数据集的得分矩阵,称其为样本的本质得分。然后,在训练数据集计算每个样本的K近邻均值,并将其投影到低维空间以获得样本的估计得分。接下来,在差分子空间(diffe-rence subspaces,DS)和差分残差子空间(difference residual subspaces,DRS)中分别建立两个新的统计量对样本进行过程监控。将本方法在两个模拟数值例子和半导体蚀刻过程中进行测试,并与PCA、FD-KNN和NPE等传统方法进行对比分析,测试结果验证了该方法的有效性。 Aiming at the fault detection in batch processes with nonlinear or multimodal characteristics,this paper proposed a health status monitoring based on DKNPE.First,it calculated the score matrix of the training data set using NPE method,which was named real scores.Then,it calculated the K-nearest neighbor mean of each sample in the training data set and projected the mean into the low-dimensional space to obtain the estimated score of the sample.Next,it established two new statistics to monitor of samples in DS and DRS respectively.Compared with traditional methods such as principal component analysis(PCA),fault detection based on K nearest neighbors(FD-KNN)and NPE,the results indicate the effectiveness of the proposed method in two numerical cases and semiconductor etch processes.
作者 张成 戴絮年 郭青秀 李元 Zhang Cheng;Dai Xunian;Guo Qingxiu;Li Yuan(Research Center for Technical Process Fault Diagnosis&Safety,Shenyang University of Chemical Technology,Shenyang 110142,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第10期3038-3042,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61490701,61673279)。
关键词 邻域保持嵌入 K近邻 半导体蚀刻过程 健康状态监视 故障检测 neighborhood preserving embedded(NPE) K nearest neighbors semiconductor etching process health status monitoring fault detection
  • 相关文献

参考文献9

二级参考文献65

  • 1Yu J, Qin S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models [J ]. AIChE J. , 2008. 54 (7): 1811-1829.
  • 2Ge Z Q. Song Z H. Multimode process monitoring based on Bayesian method [J ]. J. Ch emom. , 2009, 23 (12): 636-650.
  • 3Ge Z Q, Yang C J, Song Z H, et al. Robust online monitoring for multimode processes based on nonlinear external analysis [J ]. Ind. Eng. Chern, Res., 2008, 47 (14): 4775-4783.
  • 4Zhao C H, Yao v. Gao F R, et al. Statistical analysis and online monitoring for multimode processes with between?mode transitions [J]. Chem. Eng. Sci., 2010. 65: 5961- 5975.
  • 5Ge Z Q, Song Z H. Mixture Bayesian regularization method of PPCA for multimode process monitoring [J]. AIChE J., 2010, 56: 2838-2849.
  • 6Zhao S J, Zhang J, XU Y M. Performance monitoring of processes with multiple operating modes through multiple PLS models [J ]. J. Process Control, 2006, 16 (7): 763-772.
  • 7Zhao S J, Zhang J, XU Y M. Monitoring of processes with multiple operation modes through multiple principle component analysis models [J]. Ind. Eng. Chern, Res. , 2004, 43 (22): 7025-7035.
  • 8Lee Y H, Jin H D, Han C H. On-line process state classification for adaptive monitoring [J ]. Ind. Eng. Chern, Res., 2006, 45 (9): 3095-3107.
  • 9Ge Z Q. Song Z H. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach [J]. Control Eng. Pract. , 2008, 16 (12): 1427-1437.
  • 10He Q p, Wang J. Principal component based k-nearest?neighbor rule for semiconductor process fault detection/ / Proceedings of the 2008 American Control Conference [C]. Seattle, WA. 2008: 1606-1611.

共引文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部