期刊文献+

基于贝叶斯分类模型的电影票房预测研究 被引量:3

Research on the Prediction of Film Box Office Based on Bayesian Classification Model
下载PDF
导出
摘要 贝叶斯分类属于概率统计知识中的一种分类算法,具有高精度、高效率等特点。它根据某对象的先验概率,利用贝叶斯公式计算出其后验概率,选择具有最大后验概率的类作为该对象所属的类。文章基于贝叶斯模型理论对2018年上映的45部电影票房进行研究,通过测试其中15部电影票房测试样本,准确率达到80%,并从中挖掘出影响电影票房的重要因素,为预测电影票房提供一定的科学的依据。 Bayesian classification is a classification algorithm in probability statistics knowledge,which has the characteristics of high accuracy and high efficiency.According to the prior probability of an object,it calculates its posterior probability by Bayesian formula,and chooses the class with the maximum posterior probability as the class to which the object belongs.Based on the Bayesian model theory,the box offices of 45 films released in 2018 are studied.Through testing 15 film box offices,the accuracy rate reaches 80%.It also excavates the important factors affecting the box office and provides a scientific basis for prediction.
作者 李振兴 韩丽娜 史楠 LI Zhenxing;HAN Li'na;SHI Nan(School of Computer Science,Xi'an Shiyou University,Xi'an 710065;Shaanxi Xueqian Normal University,Xi'an 710100)
出处 《计算机与数字工程》 2020年第9期2233-2237,共5页 Computer & Digital Engineering
基金 陕西省教育厅科研计划项目(编号:17JK0826) 陕西省教育科学“十三五”规划课题(编号:SGH17H195) 咸阳师范学院“青蓝”人才工程项目(编号:XSYQL201608)资助。
关键词 贝叶斯分类模型 电影票房 预测 Bayesian classification model film box office prediction
  • 相关文献

参考文献5

二级参考文献58

  • 1吴宣文.影响电影票房的六大因素[J].中国电影市场,2006(4):14-15. 被引量:2
  • 2Jaeger M. Parameter learning for relational bayesian networks[C]// Proc. of the 24th International Conference on Machine Learning, 2007 :369 - 376.
  • 3Su J, Zhange H, Ling C X, et al. Discriminative parameter learning for Bayesian network[C]//Proc, of the 25th Interna- tional Conference on Machine Learning, 2008:1016- 1023.
  • 4Campos de C P, Ji Q. Improving Bayesian network paramter learning using constraints[C]//Proc, of the 19th International Conference on Pattern Recognition, 2008 : 113 - 120.
  • 5Chang R, Wang W. Novel algorithm for Bayesian network parameter learning with informative prior constraints[C]//Proc. of the International Joint Conference on Neural Networks, 2010: 1 - 8.
  • 6Friedman N, Goldszmidt M. Discretization of continuous attri- butes while learning Bayesain networks[C]//Proc, of the 13th International Conference on Machine Learning, 1996 : 157 - 165.
  • 7Chickering D, Heckerman D. Efficient approximations for the mar- ginal likeihood of Bayesian network with hidden variables[R]. Tech- nical Report MSR-TR-96 -08, Miscrosoft Research Advanced Tech- nology Division, Microsoft Corporation, 1997.
  • 8Muhlenbein H, Mahnig T. Convergence theory and application of the factorized distribution algorithm[J]. Journal of Compu ting and Information Technology, 1999, 7(1 ): 19 - 32.
  • 9Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies[C]//Proc, of the 1 st European Conference on Ar- tificial Life, 1991 : 134 - 142.
  • 10Ma G J, Duan H B, Liu S Q. Improved ant colony algorithm for global optimal trajectory planning of UAV under comples environment[J]. International Juournal of Computer Science & Applications, 2007, 4(3) :57 - 68.

共引文献73

同被引文献12

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部