摘要
贝叶斯分类属于概率统计知识中的一种分类算法,具有高精度、高效率等特点。它根据某对象的先验概率,利用贝叶斯公式计算出其后验概率,选择具有最大后验概率的类作为该对象所属的类。文章基于贝叶斯模型理论对2018年上映的45部电影票房进行研究,通过测试其中15部电影票房测试样本,准确率达到80%,并从中挖掘出影响电影票房的重要因素,为预测电影票房提供一定的科学的依据。
Bayesian classification is a classification algorithm in probability statistics knowledge,which has the characteristics of high accuracy and high efficiency.According to the prior probability of an object,it calculates its posterior probability by Bayesian formula,and chooses the class with the maximum posterior probability as the class to which the object belongs.Based on the Bayesian model theory,the box offices of 45 films released in 2018 are studied.Through testing 15 film box offices,the accuracy rate reaches 80%.It also excavates the important factors affecting the box office and provides a scientific basis for prediction.
作者
李振兴
韩丽娜
史楠
LI Zhenxing;HAN Li'na;SHI Nan(School of Computer Science,Xi'an Shiyou University,Xi'an 710065;Shaanxi Xueqian Normal University,Xi'an 710100)
出处
《计算机与数字工程》
2020年第9期2233-2237,共5页
Computer & Digital Engineering
基金
陕西省教育厅科研计划项目(编号:17JK0826)
陕西省教育科学“十三五”规划课题(编号:SGH17H195)
咸阳师范学院“青蓝”人才工程项目(编号:XSYQL201608)资助。
关键词
贝叶斯分类模型
电影票房
预测
Bayesian classification model
film box office
prediction