期刊文献+

基于聚类距离计算的船舶轨迹异常检测方法 被引量:4

A Trajectory Data Anomaly Detection Method Based on Trajectory Cluster Distance
下载PDF
导出
摘要 针对船舶自动识别系统(Automatic Identification System)数据,提出了一种基于聚类距离计算的异常检测方法,该方法在船舶AIS历史轨迹点聚类中提取移动点聚类重心向量和停止点聚类的采样集,定义了聚类相对距离和聚类角度距离两种聚类距离用来衡量轨迹点在距离上、航向和航速上与聚类的相似性。通过计算目标轨迹点与重心向量和采样点之间的聚类距离,可检出AIS数据中的距离异常点、航向异常点和航速异常点。基于真实AIS数据集组织了实验,验证了方法的有效性。 In order to analyze trajectory data from automatic identification system,a new method based on trajectory cluster distance calculation is proposed for the ship trajectory anomaly detection.The method proposes gravity vectors and sample stop points from the trajectory clusters generated from history data,introduces cluster relative distance and cluster angular distance to measure the similarity between target trajectory points and cluster characteristics.By calculating the distance between target trajecto⁃ry and clusters,the proposed method can detect distance anomaly,heading anomaly and speed anomaly.Experiments are made based on real AIS data,which shows the effectiveness of this method.
作者 包磊 BAO Lei(Information Science and Technology Department,Xiamen University Tan Kah Kee College,Zhangzhou 363105)
出处 《舰船电子工程》 2020年第9期56-61,共6页 Ship Electronic Engineering
基金 国家863创新基金项目(编号:2011AAJ168) 国家自然科学基金项目(编号:61272110) 湖北省自然科学基金项目(编号:2011CDB053) 武汉市青年晨光计划(编号:201150431136)资助。
关键词 时空数据挖掘 轨迹异常检测 聚类 船舶自动识别系统 spatiotemporal data mining trajectory anomaly detection cluster automatic identification system
  • 相关文献

参考文献2

二级参考文献16

  • 1Knorr E M, Ng R T, Tucakov V. Distance-based outliers: Algorithms and applications. VLDB Journal, 2000, 8 (3) : 237-253.
  • 2Ramaswamy S, Rastogi R, Shim K. Efficient algorithms for mining outliers from large data sets//Proceedings of the 2000 ACM SIGMOD International Conference. Dallas, TX, USA, 2000:427-438.
  • 3Breunig M M, Kriegel H P, Ng R T, Sander J. LOF: lden tifying density-based local outliers//Proceedings of the 2000 ACM SIGMOD International Conference. Dallas, TX, USA, 2000:93-104.
  • 4Papadimitriou S, Kitagawa H, Gibbons P B, Faloutsos C. LOCI: Fast outlier detection using the local correlation into gral//Proceedings of the 19th International Conference on Data Engineering. Bangalore, India, 2003:315-326.
  • 5Aggarwal C C, Yu P S. Outlier detection for high dimensional data//Proceedings of the 2001 ACM SIGMOI) International Conference. Santa Barbara, CA USA, 2001:37 -46.
  • 6Li X, Han J, Kim S, Gonzalez H. ROAM: Rule and motifbased anomaly detection in massive moving object data sets// Proceedings of the 7th SIAM International Conferencc on Data Mining. Minneapolis, Minnesota, 2007:296-307.
  • 7Lee J, Han J, Li X. Trajectory outlier detection: A parti tion-and-detect framework//Proceedings of the 24th Interna tional Conference on Data Engineering. Cancun, Mexico,2008:140-149.
  • 8Huttenlocher D P, Klanderman G A, Rucklidge W A. Corn paring images using the hausdorff distance. IEEE Transac tions on Pattern Analysis and Machine Intelligence, 1993 15(9) : 850-863.
  • 9Tao Yufei, Papadias Dimitris, Sun Jimeng. The TPR * tree: An optimized spatio temporal access method for predictive queries//Proeeedings of the 29th International Conference on Very Large Databases. Berlin, Germany, 2003:790 -801.
  • 10Xiong X, Mokbel M F, Aref W G. LUGrid: Update-tolerant grid based indexing for moving objects//Proceedings of the 7th International Conference on Mobile Data Management. Nara, Japan, 2006.- 13.

共引文献115

同被引文献76

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部