期刊文献+

基于多尺度卷积神经网络的胶囊内窥镜出血点快速识别 被引量:1

Quick bleeding point detection in WCE image based on multi-scale convolutional neural network
下载PDF
导出
摘要 无线胶囊内窥镜技术WCE已广泛应用于胃肠道疾病辨识中,然而随之产生的海量影像学数据为医生阅片带来了沉重负担。针对WCE图像出血点自动识别中存在的颜色和纹理特征不明显、易与正常器官混淆,细节特征模糊与病灶尺寸大小不一,以及含有较多杂质等问题,提出残差多尺度全卷积神经网络对含出血点的WCE图像进行快速分类辨识。通过引入残差学习网络中跳跃连接以及Inception网络中多尺度卷积核的思想,使简洁的网络结构能够有效提取图像的各类病灶细节特征。从实验结果看,网络的灵敏度达到98.05%,特异度达到97.67%,准确率达到97.84%,优于ResNet50和Inception-v4网络,识别效率高,且收敛速度更快,计算性能有所提升。总之,该网络兼顾出血点识别效率和性能,实用性较强。 With the full application of Wireless Capsule Endoscopy(WCE)in the detection of gastrointestinal diseases,screening out a small number of lesion images from the massive imaging data brings a heavy burden to doctors.To solve the problems existing in the automatic detection of WCE images,such as inconspicuous colour and texture features,ease of being confused with healthy organs,fuzzy detail features and different sizes of lesions,and high impurities,we propose a residual-based multi-scale fully convolutional neural network to classify and detect lesions in WCE image.By introducing the concepts of skip connection in residual learning network and multi-scale convolution kernel in the inception network,the model can effectively extract the detailed features of various lesions in the image.The experimental results show that the sensitivity of the model reaches 98.05%,the specificity reaches 97.67%,and the accuracy reaches 97.84%.It is better than the classical deep residual network ResNet50 and the standard width multi-scale Inception-v4 algorithm.The model has high recognition rate,fast convergence speed,and improved computing performance.In short,the algorithm model takes into account the efficiency and performance of bleeding point detection,and has strong practicability.
作者 谢雪娇 陆枫 李书展 周到 XIE Xue-jiao;LU Feng;LI Shu-zhan;ZHOU Dao(Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430030;National Engineering Research Center for Big Data Technology and System,School of Computer Science and Technology,Huazhong University of Science and Technology,Wuhan 430074;Key Laboratory of Cognitive Science,School of Biomedical Engineering,South-Central University for Nationalities,Wuhan 430074,China)
出处 《计算机工程与科学》 CSCD 北大核心 2020年第10期1827-1832,共6页 Computer Engineering & Science
基金 中南民族大学中央高校科研基本业务费(CZY20039,CZQ18013)。
关键词 深度学习 无线胶囊内窥镜 卷积神经网络 残差网络 多卷积核 deep learning wireless capsule endoscopy convolutional neural network residual network multiple convolution kernels
  • 相关文献

参考文献2

二级参考文献9

共引文献8

同被引文献10

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部