期刊文献+

基于混合粒子群算法的任务分配策略 被引量:1

The Strategy of Task Allocation Based on HPSO
下载PDF
导出
摘要 任务分配是MAS中非常重要的研究热点之一,任务的有效分配直接影响到整个MAS的工作效率。在粒子群优化算法相关研究的基础上,引入精英策略和遗传算法中基因交叉操作的理念,探讨了一种基于多目标混合粒子群算法的任务分配机制。 Task allocation is an very important hotspot of study in MAS,the reasonable assignment of tasks affects the efficiency of the whole MAS directly.Based on the related research of PSO,elite strategy and crossover operation of GA were introduced into the Hybrid Particle Swarm Optimization.A task allocation strategies based on Hybrid Particle Swarm Optimization was proposed in this paper.
作者 张琰 包少彬 涂双平 杨卫星 ZHANG Yan;BAO Shaobin;TU Shuangping;YANG Weixing(Nanjing Panda Handatechnology Co.,Ltd.,Nanjing 210014,China;Nanjiang Military Region Information Security Team,Kashi 844200,China;Joint Logistics Support Force Stationed In A Reserve Brigade In Hunan,Hengyang 421216,China)
出处 《数字通信世界》 2020年第10期7-10,共4页 Digital Communication World
关键词 智能体 多智能体系统 任务分配 粒子群算法 遗传算法 agent MAS task allocation PSO
  • 相关文献

参考文献4

二级参考文献43

  • 1马建红,王万森,季秋.基于改进的合同网的多专家Agent协作的研究[J].计算机应用,2004,24(11):47-49. 被引量:11
  • 2王小英,赵海,王金东,张文波,尹震宇.基于等级域的多服务Agent协作求解问题研究[J].通信学报,2005,26(8):1-8. 被引量:2
  • 3COELLO CA, PULIDO GT, LECHUGA MS. Handling Multiple Objectives with Particle Swarm Optimization [J]. IEEE Transaction Evolutionary Computation (S1089-778X), 2004, 8(3): 256-279.
  • 4SHI YH, EBERHART R. A Modified Particle Swarm Optimize [C]// Proc IEEE World Congress on Computation Intelligence, Piscataway, NJ, USA, 1998. USA, IEEE, 1998: 69-73.
  • 5SHI Y, EBERHART R. Empirical Study of Particle Swarm Optimization [C]// Proceedings of the 1999 congress on Evolutionary Computation. Piscataway, USA: IEEE, 1999: 1945-1950.
  • 6ZHANG LH, HU S. A New Approach to Improve Particle Swarm Optimization [C]// Lecture Notes in Computer Science, Chicago 2003, USA. Berlin, Germany: Springer-Verlag, 2003: 134-139.
  • 7EBERHART R, SHI Y. Comparing inertia weights and constriction factors in particle swarm optimization [C]// Proceedings of the 2000 Congress on Evolutionary Computation. California, USA: IEEE Press, 2000: 84-88.
  • 8HIGASHI N, IBA H. Particle Swarm Optimization with Gaussian Mutation [C]// Proceedings of the IEEE Swarm Intelligence Symphosium 2003. Indiana, USA: IEEE Press, 2003: 72-79.
  • 9Stacey A, Jancic M, Grtmdy I. Particle Swarm Optimization with Mutation [C]// Proceedings of the 2003 Congress on Evolutionary Computation. Canberra, Australia: IEEE Press, 2003: 1425-1430.
  • 10LI N, QIN YQ, SUN DB, Zou T. Particle Swarm Optimization with Mutation Operator [C]// Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai, China, 2004. Piscataway, USA: IEEE, 2004:2251-2256.

共引文献34

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部