摘要
基于客户满意度和企业社会责任视角,考虑运输工具的排放、在途、不准时和货物价值衰变等因素造成的损失,结合运输工具成本,建立以综合运输成本最低为目标的多式联运路径优化模型,设计混合蝙蝠算法(HBA)对模型进行求解。采用随机算例进行仿真实验,并与和声算法(HSA)和混合算法(HA)进行对比。研究结果表明,模型及算法均可行有效,且HBA算法的全局寻优能力、稳定性和运行速度均优于HSA算法和HA算法。
From the two perspectives of customer satisfaction and the social responsibility of the enterprise,a comprehensive transportation cost model is established,considering the loss caused by factors such as the exhaust emissions,in-transit inventory losses,delay or early loss and goods value decay,combined with transport cost.On this basis,a multimodal transport path optimization model is also established to minimize the comprehensive transport cost as the goal.In addition,a Hybrid Bat Algorithm(HBA)is designed to solve the path optimization model.Finally,a random simulation experiment is implemented and compared with Harmony Search Algorithm(HSA)and Hybrid Algorithm(HA).The research results show that both the model and the Hybrid Bat Algorithm(HBA)are feasible and effective.What’s more,the Hybrid Bat Algorithm(HBA)is superior to Harmony Search Algorithm(HSA)and Hybrid Algorithm(HA)in many aspects such as the global optimization ability,stability and running speed.
作者
李魁梅
郑波
LI Kuimei;ZHENG Bo(School of Forge Business,College of Mobile Telecommunications Chongqing University of Posts and Telecom,Chongqing 401520,China;School of Management,Chongqing Radio&TV University,Chongqing 401520,China)
出处
《工业工程》
北大核心
2020年第5期67-74,共8页
Industrial Engineering Journal
基金
国家自然科学基金资助项目(71802031)
重庆市教委科学技术研究项目(KJQN201802403)。
关键词
多式联运
综合运输成本
路径优化
蝙蝠算法
混合算法
multimodal transport
comprehensive transport cost
rout optimization
bat algorithm
hybrid algorithm