期刊文献+

High Electrical and Thermal Conductivity of Nano-Ag Paste for Power Electronic Applications 被引量:4

原文传递
导出
摘要 The nano-Ag paste consisted of Ag nanoparticles and organic solvents.These organics would be removed by evaporation or decomposition during sintering.When the sintering temperature was 300℃,the resistivity of sintered bulk was 8.35×10^-6Ωcm,and its thermal conductivity was 247 W m^-1 K^-1.The Si/SiC chips and direct bonding copper(DBC)substrates could be bonded by this nano-Ag paste at low temperature.The bonding interface,sintered microstructure and shear strength of Si/SiC chip attachment were investigated by scanning electron microscopy,transmission electron microscopy and shear tests.Results showed that the sintered Ag layer was porous structure and tightly adhered to the electroless nickel immersion gold surface of DBC substrate and formed the continuous Ag–Au interdiffusion layer.The shear strength of Si and SiC chip attachments was higher than 35 MPa when the sintering pressure was 10 MPa.The fracture occurred inside the sintered Ag layer,and the fracture surface had obvious plastic deformation.
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2020年第11期1543-1555,共13页 金属学报(英文版)
基金 financially supported by the National Key Research and Development Program of China(No.2017YFB1104900) the China Postdoctoral Science Foundation(No.2019M650425)。
  • 相关文献

同被引文献22

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部