期刊文献+

Low-Cycle Fatigue and Creep-Fatigue Behaviors of a Second-Generation Nickel-Based Single-Crystal Superalloy at 760℃

原文传递
导出
摘要 Low-cycle fatigue(LCF)behaviors of a second-generation nickel-based single-crystal superalloys with[001]orientation at 760℃ have been investigated.Different strain amplitudes were introduced to investigate the creep-fatigue effects.The LCF life of none tensile holding(NTH)was higher than that of the 60-s tensile hold(TH)at any strain amplitude.As the strain amplitude was 0.7%,the stacking and cross-slip dislocations appeared together at the γ/γ’coherent microstructure in both TH and NTH specimens.At the strain amplitude of 0.9%,plenty of the cross-slip dislocations appeared inγchannel and other dislocations were stacking at γ/γ’interfaces.However,the SFs still appeared in γ’phase with 60-s TH which caused cyclic softening.As the strain amplitude increased up to 1.2%,the dislocations are piling up at the γ/γ’interfaces and cutting through the γ’phase in both TH and NTH tests,which caused cyclic hardening.The influences of strain amplitude and holding time were complicated.Different stress response behaviors occurred in different loading conditions.The surface characteristic and fracture mechanism were observed by scanning electron microscopy.This result is helpful for building the relationship of various blade fatigue failure modes,cyclic stress response and microstructure deformation under different strain amplitudes.
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2020年第10期1423-1432,共10页 金属学报(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部