期刊文献+

基于PSWF奇偶特性的子频段分组脉冲组设计方法

Design of Sub-band Grouping Pulse Group Based on PSWF Parity Characteristic
下载PDF
导出
摘要 针对现有椭圆球面波函数(PSWF)脉冲组方案中正交化处理和自身构造限制造成系统复杂度高、调制信号峰均功率比高的不足,结合PSWF信号奇偶特性,提出了一种基于PSWF奇偶特性的子频段分组脉冲组设计方法,通过将通信频段划分为若干个带宽相同且相邻的子频段,在子频段内划分频谱交叠的子波带构建脉冲组,利用子波带中具有不同奇偶特性的PSWF信号之间天然的正交性,完全避免了正交化处理。理论和数值分析表明,与正交化处理PSWF脉冲组方案相比,所提方案能有效降低系统复杂度;并且当CCDF为10-4时,能使调制信号峰均功率比降低约1.49 dB。 Due to orthogonalization processing and its own structural constraints,the Prolate Spheroidal Wave Function(PSWF)pulse group scheme has high system complexity and high Peak-to-Average Power Ratio(PAPR)of the modulation signal.Aiming at the problems,and considering the odd-even feature of PSWF signal,a sub-band grouping pulse group scheme based on PSWF parity characteristics is proposed.The communication frequency band is divided into several sub-bands with the same and adjacent bandwidth,and the overlapped wavelet bands are divided within the sub-band to construct the pulse group.The natural orthogonality between PSWF signals with different odd-even characteristics in the wavelet band is utilized to completely avoid the orthogonalization processing.Theoretical and numerical analysis show that:1)Compared with the orthogonalized PSWF pulse group scheme,our scheme can effectively reduce the system complexity;and 2)When CCDF is 10-4,the PAPR of modulation signal can be reduced by about 1.49 dB.
作者 缪幸吉 刘传辉 王红星 陆发平 康家方 MIAO Xingji;LIU Chuanhui;WANG Hongxing;LU Faping;KANG Jiafang(Naval Aviation University,Yantai 264001,China;Naval Equipment Department,Xi'an 710000,China)
出处 《电光与控制》 CSCD 北大核心 2020年第10期53-56,98,共5页 Electronics Optics & Control
基金 国家自然科学基金(61701518) 山东省“泰山学者”建设工程专项经费基金(ts20081130)。
关键词 椭圆球面波函数 脉冲组 峰均功率比 奇偶特性 prolate spheroidal wave function pulse group peak-to-average power ratio parity characteristic
  • 相关文献

参考文献3

二级参考文献35

  • 1王红星,赵志勇,刘锡国等.非正弦时域正交调制方法[P].中国专利,公开号:CN101409697A,2009.
  • 2LIN Zhi-yue, McCALLUM R W, WANG Hong-yu. Computation and performance of the prolate-spheroidal wave function window in spectral estimation [ C ]//IEEE International Conference on Acoustics, Speech, and Signal Processing, 1996,5:2976 - 2978.
  • 3JITSUMATSU Y, KOHDA T. Prolate spheroidal wave functions induce Gaussian chip waveforms [ C]//IEEE International Symposium on Information Theory,2008:1363- 1367.
  • 4WEI L, KENNEDY R, LAMAHEWA T. An optimal basis of band- limited functions for signal analysis and design[ C]// IEEE Transactions on Signal Processing,2010,99:1 - 10.
  • 5WEI Li-ying, KENNEDY R A, LAMAHEWA T A. Further results on signal concentration in time-frequency[ C]//IEEE International Conference on Acoustics Speech and Signal Processing, 2010 : 4082 - 4085.
  • 6WU Chang-guo, JIANG Gang-xing, ZHU Hong-bo. SSA realization for spectrum shaping and NBI suppression in cognitive UWB radios [ C ]//International Conference on Microwave and Millimeter Wave Technology, 2008,3:1454- 1457.
  • 7SUN Jie, GUPTA D V, LAI Zhi-guo, et al. Indoor transmission of muhi-gigabit-per-second data rates using millimeter waves [ C ]//IEEE International Conference on Ultra- Wideband, 2009 : 783 - 787.
  • 8汪裕民.OFDM关键技术与应用[M].北京:机械工业出版社,2006.
  • 9Slepian D and Pollak H O. Prolate spheroidal wave functions, Fourier analysis, and uncertainty-I[J]. Bell System Technology Journal, 1961, 40(1): 43-46.
  • 10Pei Soo-chang and Ding Jian-jun. Generalized prolate spheroidal wave functions for optical finite fractional Fourier and linear canonical transforms[J]. The Journal of the Optical Society of America A, 2005, 22(3): 460-474.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部