期刊文献+

热老化氧化铈填充硫化天然橡胶单轴疲劳有限元研究

Finite Element Analysis of Thermal Aging Fatigue of Cerium Oxide-modified Vulcanized Natural Rubber
下载PDF
导出
摘要 通过加速热老化方式在60℃、80℃、100℃下对氧化铈填充硫化天然橡胶进行了24h的热老化处理,并且对热老化后的橡胶试件进行了单轴疲劳试验.提取并采用疲劳试验结果中应变范围0-175%的单轴拉伸数据,在等效应力状态推导下获得相应的等双轴数据,利用FEA软件建立了可以有效地描述氧化铈填充硫化天然橡胶热老化后材料属性的有限元模型,根据疲劳加载条件模拟获得的应力计算结果与试验结果偏差在10%以内,为下一步的疲劳寿命预测提供可靠的数据模型支持. In this paper,cerium oxide-modified vulcanized natural rubber was treated by artificially accelerated thermal aging at 60℃,80℃and 100℃for 24h and uniaxial fatigue test of rubber specimens after thermal aging was carried out.The uniaxial tensile data within the strain range of 0-175%in the fatigue test results were extracted and the equal biaxial data were obtained under the condition of equal-effect force states.The finite element model of the material properties after the thermal aging of cerium oxide-modified vulcanized natural rubber can be effectively described by using the FEA software.According to the fatigue loading condition,the deviation between the stress calculation results and the test results is less than 10%,which provides reliable data model support for the next step of fatigue life prediction.
作者 吉重瑞 汪艳萍 刘建军 段无畏 JI Chong-rui;WANG Yan-ping;LIU Jian-jun;DUAN Wu-wei(College of Chemical Engineering,Inner Mongolia University of Technology,Hohhot 010051,China)
出处 《内蒙古工业大学学报(自然科学版)》 2020年第2期96-103,共8页 Journal of Inner Mongolia University of Technology:Natural Science Edition
基金 国家自然科学基金项目(11562015)。
关键词 热老化 氧化铈 硫化天然橡胶 单轴疲劳 有限元模型 thermal aging cerium oxide vulcanized natural rubber uniaxial fatigue finite element model
  • 相关文献

参考文献1

二级参考文献14

  • 1曹金风,王旭春,孔亮.Python语言在Abaqus中的应用[M].北京:机械工业出版社.2011.
  • 2White L. Extreme Oilfield Conditions Push Elastomers to the Limit[J]. European Rubber Journal, 1999,181(1) : 24-27.
  • 3Nieholson D W,Nelson N W. Finite--element Analysis in De- sign with Rubber [J]. Rubber Chemistry and Technology,1990,63(3) : 368-406.
  • 4Mars W V,Fatemi A. Fatigue Crack Nucleation and Growth in Filled Natural Rubber[J]. Fatigue & Fracture of Engineer- ing Materials & Structures, 2003,26 (9) : 779-789.
  • 5Mars W V. Multiaxial Fatigue Crack Initiation in Rubber[J]. Tire Science and Technology, 2001,29 (3) : 171-185.
  • 6Mars W V, Fatemi A. A Phenomenological Model for the Effect of R Ratio on Fatigue of Strain Crystallizing Rubbers [J]. Rubber Chemistry and Technology, 2003,76 ( 5 ) : 1241- 1258.
  • 7Mars W V. Cracking Energy Density as a Predictor of Fatigue Life under Multiaxial Conditions[J]. Rubber Chemistry and Technology, 2002,75 (1) :1-17.
  • 8Mars W V,Fatemi A. Multiaxial Fatigue of Rubber. Part I. Equivalence Criteria and Theoretical Aspects[J]. Fatigue Fracture of Engineering Materials &. Structures, 2005, 28 (6) :515-522.
  • 9Mars W V,Fatemi A. Multiaxial Fatigue of Rubber. Part II. Experimental Observations and Life Predictions[J]. Fatigue Fracture of Engineering Materials & Structures, 2005,28(6) :523-538.
  • 10Harbour R J, Fatemi A, Mars W V. Fatigue Crack Growth of Filled Rubber under Constant and Variable Amplitude Load- ing Conditions[J]. Fatigue & Fracture of Engineering Mate- rials & Structures, 2007,30 (7) : 640-652.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部