期刊文献+

Melting behavior and globular microstructure formation in semi-solid CoCrCuxFeNi high-entropy alloys 被引量:2

原文传递
导出
摘要 High-entropy alloys can be compelling raw materials for semi-solid applications.In the present study,the influence of the Cu content on the melting behavior and semi-solid microstructure of CoCrCuxFeNi(x=0,1,2,3)alloys was investigated.Arc-melted samples were cross-rolled at room temperature and then isothermally treated at 1175℃in the semi-solid state for 300 s.Microstructural characterization showed that the alloys containing Cu were formed by two fcc phases.Notably,the increase in Cu content also led to an increase in the volumetric fraction of the Cu-rich phase.During solidification,this phase,which is the last to form,nucleates and epitaxially grows on the Cu-lean phase.All the studied CoCrCuFeNi alloys exhibited the same melting behavior.The Cu-rich phase melts at approximately 1120℃,whereas the Culean phase melts at approximately 1350℃,providing a suitable processing temperature range of more than 200℃.The semi-solid microstructures were considerably refined and globular regardless of the alloy composition,being suitable for semi-solid processing.Furthermore,each fcc phase exhibited roughly the same composition under the different processing conditions.The Cu content in the Cu-lean phase was approximately 10 at.%,while Co,Cr,Fe,and Ni were in an approximately equiatomic ratio.Meanwhile,the Cu content was between 80 at.%and 86 at.%in the Cu-rich phase.The isothermal treatment of the CoCrCu3FeNi alloy at a higher temperature(1300℃)only caused the globules to coarsen.In conclusion,this work showed that these alloys can be potential candidates for semi-solid processing.
机构地区 University of Campinas
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第17期207-217,共11页 材料科学技术(英文版)
基金 financially supported by the Sao Paulo Research Foundation(FAPESP)(No.2018/10190-5)。
  • 相关文献

同被引文献26

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部