期刊文献+

Effects of process parameters on semi-solid squeeze casting performance of aluminum alloy scrolls for scroll compressors 被引量:3

下载PDF
导出
摘要 The aluminum alloy scroll is one of the key parts of the scroll compressors widely used in the air-conditioning,refrigeration,and heat pump systems.In this work,the semi-solid squeeze casting(SSSC)process was used to fabricate the aluminum alloy scroll.The effects of process parameters including the pouring temperature,mold temperature,and squeezing velocity on the filling and solidification behaviors of the alloys were investigated through simulations based on the power law cut-off(PLCO)material model.Results show that there is a significant increase in the flow velocity of the slurry,and the area of the high-speed region enlarges with the increase of the pouring temperature.The homogeneity of the temperature and velocity fields in the slurry is improved with an increase in mold temperature.Both the filling time and its variation rate decrease with an increase in squeezing velocity.The maximum solidification time exhibits a linear variation with the increase in pouring temperature.The shrinkage area is decreased by increasing the mold temperature.The optimal process parameters of the SSSC process were obtained from simulation analysis,which are the pouring temperature of 595°C,mold temperature of 350°C,and squeezing velocity of 0.3 m·s-1.Moreover,the qualified scroll casting was fabricated using the SSSC process under the optimal process parameters.
出处 《China Foundry》 SCIE 2020年第5期347-356,共10页 中国铸造(英文版)
基金 the China Postdoctoral Science Foundation(Grant No.2018M 643627) the Open Foundation from the CAS Key Laboratory of Cryogenics,TIPC(Grant No.CRYO201810) the Fundamental Research Funds for the Central Universities(Grant No.XZY012019003/XZD012019009) the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(Grant No.GZKF-201912).
  • 相关文献

参考文献5

二级参考文献30

  • 1H. Friedrich, S,J. Schumann, J. Mater. Process. Technol. 117 (2001) 276-281.
  • 2B.L. Mordike, T. Ebert, Mater. Sci. Eng. A 302 (2001) 37-45.
  • 3A.K. Dahle, S. Sannes, D.H. John, H. Westengen, J. Light Metals 1 (2001) 99-103.
  • 4S. Otarawann, C.M. Gourlay, H.L Laukli, A.K. Dahle, Mater. Charact. 60 (2009) 1432-1441.
  • 5M. Wu, S. Xiong, J. Mater. Sci. Technol. 27 (2011 ) 1150-1156.
  • 6W. Xiao, S. Zhu, M.A. Easton, M.S. Dargusch, M.S. Gibson, J. Nie, Mater. Charact. 65 (2012) 28-36.
  • 7J. Song, S.M. Xiong, J. Alloy. Compd. 509 (2011) 1866-1869.
  • 8S.G. Lee, A.M. Gokhale, A. Sreeranganathan, Mater. Sci. Eng. A 427 (2006) 92-98.
  • 9S.G. Lee, A.M. Gokhale, Scr. Mater. 55 (2006) 387-390.
  • 10S.G. Lee, A.M. Gokhale, G.R. Patel, M. Evans, Mater. Sci. Eng. A 427 (2006) 99-111.

共引文献33

同被引文献30

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部