摘要
Replacement of samarium(Sm) with abundant yttrium(Y) can help solve the potential shortage of Sm in the preparation of promising Sm2 Fe17 Nx magnets.In this article,phase composition,microstructure and magnetic properties of(Sm1-yYy)2 Fe17Nx(y=0,0.2,0.4,0.6,0.8,1.0) were investigated.Maximum energy product(BH)max is improved when less than 40 at% Y is doped in(Sm1-yYy)2 Fe17Nx powder.In particular,when 20 at% Y replaces Sm,(BH)max of(Sm1-yYy)2 Fe17Nx powder increases by 15.1% from 131.7 to151.6 kJ/m3.The effect of annealing temperature on the structural properties of high Y doping(Sm0.6Y0.4)2 Fe17 and the magnetic properties of the corresponding nitrides were subsequently investigated.In the RE2 Fe17 phase grain combination process,the interlaced structure of the rhombohedral Th2 Zn17-type structural phase and the hexagonal Th2 Ni17-type structural phase is formed.Due to shortrange exchange coupling,the nitride with the highest content of two interlaced RE2 Fe17 phases has the highest magnetic properties:Br=1.23 T,HcJ=443.9 kA/m and(BH)max=197.6 kJ/m3.
基金
Project supported by State Key Laboratory of Rare Earth Permanent Magnetic Materials (SKLREPM17OF06)
National Natural Science Foundation of China (U1802254
51871201)
Xinmiao Talent Planning of Zhejiang Province (2019R403055)。