期刊文献+

基于TM基的压缩感知无线信道估计测量矩阵的构造

Construction of Measurement Matrix for Compressed Sensing Wireless Channel Estimation Based on TM
下载PDF
导出
摘要 使用压缩感知方法可以实现无线信道的有效估计,测量矩阵的选取是压缩感知信道估计中一个关键问题,直接影响到信道估计的效果。目前常用的一些测量矩阵如随机高斯矩阵在基于Takenaka-Malmquist基函数的压缩感知信道估计中效果并不理想。使用有效投影来优化测量矩阵,从多维尺度分解的角度设计一个新的测量矩阵。仿真结果说明了该测量矩阵在基于Takenaka-Malmquist基函数的压缩感知信道估计的有效性。 Effective estimation of wireless channels can be realized by using compression sensing methods,and the selection of measurement matrix is a key issue in compressed sensing channel estimation,which directly affects the effect of channel estimation.However,some commonly used measurement matrices such as random Gaussian matrices do not work well in the estimation of compressed sensing channel estimation based on Takenaka-Malmquist basis functions.This paper uses effective projections to optimize the measurement matrix and designs a new measurement matrix from the perspective of a multidimensional scale decomposition.The simulation result shows the effectiveness of the measurement matrix in compressed sensing channel estimation based on the Takenaka-Malmquist basic function.
作者 钱婷 雷娅
出处 《工业控制计算机》 2020年第10期65-66,105,共3页 Industrial Control Computer
关键词 压缩感知 信道估计 测量矩阵 Takenaka-Malmquist基函数 compressed sensing channel estimation measurement matrix Takenaka-Malmquist basis function
  • 相关文献

参考文献1

二级参考文献102

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2Emmanuel J. Candès,Michael B. Wakin,Stephen P. Boyd.Enhancing Sparsity by Reweighted ? 1 Minimization[J]. Journal of Fourier Analysis and Applications . 2008 (5-6)
  • 3Richard Baraniuk,Mark Davenport,Ronald DeVore,Michael Wakin.A Simple Proof of the Restricted Isometry Property for Random Matrices[J]. Constructive Approximation . 2008 (3)
  • 4B. S. Kashin,V. N. Temlyakov.A remark on Compressed Sensing[J]. Mathematical Notes . 2007 (5-6)
  • 5Z B Xu,H Y Wang,X Y Chang.L1/2Regularizer. SciChina Ser F-Inf Sci . 2009
  • 6M Elad.Sparse and Redundant Representations:From Theoryto Applications in Signal and Image Processing. . 2010
  • 7R J Duffin,A C Schaeffer.A class of non-harmonic Fourierseries. Trans.AMS . 1952
  • 8M Elad,M Aharon.Image denoising via sparse and redundantrepresentations over learned dictionaries. IEEE Transac-tions on Image Processing . 2006
  • 9K Engan,K Skretting,J H Husoy.A family of iterative LS-based dictionary learning algorithms,ILS-DLA,for sparse sig-nal representation. Digital Signal Process . 2007
  • 10H Zayyani,M Babaie-Zadeh.Thresholded smoothed-L0 (SL0)dictionary learning for sparse representations. IEEE Inter-national Conference on Acoustics,Speech and Signal Process-ing . 2009

共引文献316

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部