期刊文献+

Computational prediction of RNA tertiary structures using machine learning methods 被引量:1

下载PDF
导出
摘要 RNAs play crucial and versatile roles in biological processes. Computational prediction approaches can help to understand RNA structures and their stabilizing factors, thus providing information on their functions, and facilitating the design of new RNAs. Machine learning (ML) techniques have made tremendous progress in many fields in the past few years. Although their usage in protein-related fields has a long history, the use of ML methods in predicting RNA tertiary structures is new and rare. Here, we review the recent advances of using ML methods on RNA structure predictions and discuss the advantages and limitation, the difficulties and potentials of these approaches when applied in the field.
作者 Bin Huang Yuanyang Du Shuai Zhang Wenfei Li Jun Wang Jian Zhang 黄斌;杜渊洋;张帅;李文飞;王骏;张建(National Laboratory of Solid State Microstructures,School of Physics,Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China;Institute for Brain Sciences,Kuang Yaming Honors School,Nanjing University,Nanjing 210093,China)
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第10期17-23,共7页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant Nos. 11774158, 11974173, 11774157, and 11934008)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部