期刊文献+

监控视频中异常事件检测技术研究进展 被引量:17

Progress on Abnormal Event Detection Technology in Video Surveillance
下载PDF
导出
摘要 异常事件检测技术是当前智能监控技术研究领域关注的一个热点,作为计算机视觉的重要研究内容,其主要目标是利用计算机自动检测出可被视为异常的事件。传统方法存在低层视频特征描述能力弱,异常检测方法计算代价大,对复杂场景建模时鲁棒性差等方面的限制。本文结合国内外的研究现状和目前的主流方法,介绍了监控视频中异常事件检测涉及的基本技术,分析了各类监控视频特征提取方法、特征学习模型和异常检测方法的优缺点,整理归纳了可用于监控视频中异常事件检测的常用实验数据集,最后讨论了监控视频中异常事件检测技术的难点、挑战及未来发展趋势。 Abnormal event detection is a hot topic in the field of intelligent surveillance monitoring technology research currently.As an important research content of computer vision,its main goal is to use computers to automatically detect abnormal events.Traditional methods have limitations in the weakness of low-level video feature description ability,high computational cost of anomaly detection methods and poor robustness in modeling complex scenes.In recent years,how to design a high-level semantic feature extraction method,accelerate the process of abnormal event detection,and model complex scenes such as multiple cameras have become the forefront topic of current research.Based on the research situation at home and abroad and the mainstream methods,this paper introduces the basic techniques involved in abnormal event detection in surveillance videos,and analyzes the advantages and disadvantages of various types of surveillance video feature extraction methods,feature learning models and anomaly detection methods.This paper also summarizes the commonly used benchmark datasets that can be used to abnormal event detection in surveillance videos.Finally,we discuss the difficulties,challenges and future development trends of abnormal event detection in surveillance videos.
作者 吉根林 许振 李欣璐 赵斌 JI Genlin;XU Zhen;LI Xinlu;ZHAO Bin(School of Computer Science and Technology,Nanjing Normal University,Nanjing,210046,China)
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2020年第5期685-694,共10页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(41971343)资助项目。
关键词 异常事件检测 监控视频分析 行为识别 计算机视觉 机器学习 abnormal event detection surveillance analysis activity recognition computer vision machine learning
  • 相关文献

参考文献8

二级参考文献106

  • 1李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 2钟志,徐扬生,石为人,叶伟中,李家强.群体异常检测(英文)[J].仪器仪表学报,2007,28(4):614-620. 被引量:4
  • 3周巧云 于仕琪.运动人体行为分析.先进技术研究通报,2009,:47-51.
  • 4MULLER-SCHNEIDERS S,JAGER T,LOOS H S, et al. Performance evaluation of a real time videosurveillance system[C]. 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, 2005 : 137-143.
  • 5BOBICK A F,DAVIS J W. The recognition of human movement using temporal templates [J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(3) :257-267.
  • 6HELAL S, COOK D. Human activity recognition and pattern discovery [J]. IEEE Pervasive Computing, 2010,9(1) :48-53.
  • 7MIGLIORE D A, MATTEUCCI M, NACCARI M. A revaluation of frame difference in fast and robust motion detection [C]. Proceedings of the 4th ACM international workshop on Video surveillance and sensor networks, 2006 : 215-218.
  • 8ZIVKOVIC Z. Improved adaptive Gaussian mixture model for background subtraction[C]. Proceedings of the 17th International Conference on Pattern Recognition, 2004 : 28-31.
  • 9BARRON J L, FLEET D J, BEAUCHEMIN S S. Performance of optical flow techniques[J]. International Journal of Computer Vision, 1994,12(1) : 43-77.
  • 10COMANICIU D, RAMESH V, MEER P. Real-time tracking of non-rigid objects using mean shift[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2000 : 142-149.

共引文献94

同被引文献98

引证文献17

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部