期刊文献+

一类带Φ-Laplace算子的差分方程的非振荡解问题

On Non-Oscillatory Solutions for a Class of Difference Equation withΦ-Laplace Operator
下载PDF
导出
摘要 主要研究带Φ-Laplace算子的差分方程Δ(a nΦ(Δx n))+b n|x n+1|γsgn x n+1=0 n≥1,γ>0的非振荡解问题.在Φ,{a n}和{b n}分别满足一定条件下给出方程的非振荡解是最终严格单调的,并依据非振荡解的极限行为将其分为4类.利用Schauder不动点定理和离散型Lebesgue控制收敛定理证明了方程的4类非振荡解存在. This paper deals with the problem of non-oscillatory solutions for difference equationΔ(a nΦ(Δx n))+b n|x n+1|γsgn x n+1=0 n≥1,γ>0 involvingΦ-Laplace operator.It gives that all of the non-oscillatory solutions are eventually strongly monotone whenΦand the sequences{a n},{b n}satisfy certain conditions.Then it classifies them into four classes according to the behaviors of the non-oscillatory solutions.Moreover,the paper proves the existence of four types of non-oscillatory solutions to the equation by the Schauder fixed point theorem and the discrete analog of the Lebesgue dominated theorem.
作者 温春兰 WEN Chun-lan(School of Mathematics,Sichuan university,Chengdu 610064,China)
出处 《西南师范大学学报(自然科学版)》 CAS 北大核心 2020年第10期21-27,共7页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 Φ-Laplace算子 差分方程 非振荡解 Φ-Laplace operator difference equation non-oscillatory solutions
  • 相关文献

参考文献4

二级参考文献8

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部