期刊文献+

基于自编码器和门限循环单元神经网络的滚动轴承退化趋势预测 被引量:16

Degradation trend prediction of rolling bearing based on auto-encoder and GRU neural network
下载PDF
导出
摘要 针对现有滚动轴承性能退化趋势预测方法存在退化指标选取困难、预测精度较低的问题,提出基于自编码器和门限循环单元神经网络的滚动轴承退化趋势预测方法。首先,构建轴承振动信号混合域高维特征集,采用指标综合评价值初步筛选敏感性高、趋势性好的性能退化指标;然后,利用自编码器融合高维特征集,消除混合域特征之间的冗余信息;在此基础上,将融合后的特征输入门限循环单元(gated recurrent unit,GRU)神经网络模型以完成滚动轴承退化趋势预测。试验结果表明,所提方法能获得更加准确的滚动轴承退化趋势预测结果。 Aiming at problems of degradation index selection being difficult and prediction accuracy being low in the rolling bearing performance degradation trend prediction method,a prediction method for rolling bearing degradation trend based on auto-encoder and GRU neural network was proposed.Firstly,a mixed field high-dimensional feature set of bearing vibration signals was constructed,and the index comprehensive evaluation value was used to preliminarily screen performance degradation indexes,and gain those with higher sensitivity and better trend.Then,the auto-encoder was used to fuse the high-dimensional feature set,and eliminate redundant information among mixed field features.Finally,fused features were input into the GRU neural network model to complete rolling bearing degradation trend prediction.Test results showed that the proposed method can obtain more accurate prediction results for rolling bearing performance degradation trend.
作者 王鹏 邓蕾 汤宝平 韩延 WANG Peng;DENG Lei;TANG Baoping;HAN Yan(State Key Lab of Mechanical Transmission,Chongqing University,Chongqing 400030,China)
出处 《振动与冲击》 EI CSCD 北大核心 2020年第17期106-111,133,共7页 Journal of Vibration and Shock
基金 国家自然科学基金(51775065,51675067)。
关键词 滚动轴承 退化趋势预测 自编码器(AE) GRU神经网络 rolling bearing degradation trend prediction auto-encoder(AE) GRU neural network
  • 相关文献

参考文献6

二级参考文献32

  • 1程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J].机械工程学报,2004,40(8):115-118. 被引量:85
  • 2YuDejie ChengJunsheng YangYu.FAULT DIAGNOSIS APPROACH FOR ROLLER BEARINGS BASED ON EMPIRICAL MODE DECOMPOSITION METHOD AND HILBERT TRANSFORM[J].Chinese Journal of Mechanical Engineering,2005,18(2):267-270. 被引量:14
  • 3W.K.Wong, C.W.M.Yuen, D.D.Fan et al, Stitching defect detection and classification using wavelet transform and BP neural network, Expert Systems with Applications,Volume 36, Issue 2, Part 2, March 2009, Pages 3845-3856.
  • 4Saeed Gholizadeh, Akbar Pirmoz and Reza Attarnejad, Assessment of load carrying capacity of castellated steel beams by neural networks, Journal of Constructional Steel Research,Volume 67, Issue 5, May 2011, Pages 770-779.
  • 5Sumantra Mandal, P.V.Sivaprasad, S.Venugopal,et al, Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion ,Applied Soft Computing,Volume 9, Issue 1, January 2009, Pages 237-2.
  • 6奚立峰,黄润青,李兴林,刘中鸿,李杰.基于神经网络的球轴承剩余寿命预测[J].机械工程学报,2007,43(10):137-143. 被引量:56
  • 7Gebraeel N, Lawley M, Liu R, et al. Residual life predictions from vibration-based degradation signals: a neural network approach [ J ]. Industrial Electronics, IEEE Transactions on, 2004, 51(3): 694-700.
  • 8Janjarasjitt S, Ocak H, Loparo K A. Bearing condition diagnosis and prognosis using applied nonlinear dynamical analysis of machine vibration signal [ J ]. Journal of Sound and Vibration, 2008(317) : 112 -126.
  • 9Antoni J. Cyclic spectral analysis of rolling-element bearing signals: facts and fictions [ J ]. Journal of Sound and Vibration, 2007, 304 ( 3 - 5 ) : 497 - 529.
  • 10Dong S, Luo T. Bearing degradation process prediction based on the PCA and optimized ES-SVM model [ J ]. Measurement, 2013, 46(9) : 3143 -3152.

共引文献126

同被引文献113

引证文献16

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部