摘要
学习分析是“大数据”在教育领域的应用,有利于解释学习行为、评估影响因素、提供个性化反馈,进而促进创新提升质量。欧洲“支持高等教育整合学习分析”项目组立足各国院校发展现状,将快速结果映射模型的六项维度即描摹政策情境、确认主要利益相关者、明确预期行为变化、制定参与战略、分析内部能力以及建立监督和学习体系,与行动、挑战及政策三个领域相互结合,从而提出了理论架构并选取典型案例予以阐释。总之,高校学习分析政策应立足技术与制度的相互结合,借助多重维度的共同支撑并依托丰富多样的高校实践。
Learning analysis is the application of big data in the field of education,and is helpful to explain learning behavior,evaluate influencing factors,provide personalized feedback,and promote innovation and improve quality.Basing on the current situation of universities and colleges,the European research project team“Supporting Higher Education to Integrate Learning Analytics”combines six dimensions of Rapid Outcome Mapping Approach,which are mapping political context,identifying key stakeholders,clarifying desired behavior changes,formulating engagement strategy,analyzing internal capacity and establishing monitoring and learning framework.Based on the three fields of action,challenge and policy,a theoretical framework is proposed and typical cases are selected for interpretation.In short,university learning analysis policies should be based on the combination of technology and system,with the help of multiple dimensions of joint support and relying on rich and diverse university practices.
出处
《高教发展与评估》
CSSCI
北大核心
2020年第5期77-86,I0005,I0006,共12页
Higher Education Development and Evaluation
基金
2020年度浙江省哲学社会科学规划课题“资源整合视角下高校产教融合绩效的评价模型及提升路径研究——以浙江省为例”(20NDJC166YB)
江苏省高校哲学社会科学研究重点项目(2018SJZDI191)
2020年度浙江省教育科学规划课题“质量文化视野下高水平应用型本科院校发展路径研究——以浙江省为例”(2020SCG320)。
关键词
学习分析
欧洲高校
教育大数据
教育整合
learning analysis
policy
European higher education institution
big data in the field of education
educational integration