摘要
Artificial photosynthesis has gained increasing interest as a promising solution to the worldwide energy and environmental issues. A crucial requirement for realizing a sustainable system for artificial photosynthesis is to explore low cost, highly-efficient and stable photoactive materials. Carbon nanodots(CNDs) have attracted considerable attention owing to their low cost, tunable chemistry and unique light-harvesting capability. Previous review articles have highlighted the photocatalytic and photoelectrocatalytic applications of CNDs and CNDs-based composite photocatalysts. However, the control of the separation and transfer processes of photogenerated electron/hole pairs in CNDs has not been reviewed.This review summarizes the recent progress in the design of CNDs as new light-harvesting materials and highlights their applications in photocatalytic hydrogen production, CO2 photoreduction and environmental remediation. Strategies that have been employed to modulate the separation and transfer kinetics of photogenerated charge carriers in CNDs are discussed in detail. The challenges and new directions in this emerging area of research are also proposed.
基金
financially supported by the National Natural Science Foundation of China(21703039)。