期刊文献+

基于面部信息的挖掘机驾驶员疲劳特征提取 被引量:1

Excavator driver fatigue feature extraction based on facial information
下载PDF
导出
摘要 针对挖掘机驾驶员疲劳驾驶导致操作事故问题,文章提出一种基于面部信息的挖掘机驾驶员疲劳特征提取方法。首先采用基于AdaBoost算法对人脸和眼部区域进行定位,根据“三庭五眼”的脸部特征定位嘴部;其次用大津法二值化眼部图像,并根据其垂直积分投影判断眼睛状态;最后采用基于Canny的嘴部边缘检测方法获取嘴部似圆度判断嘴部状态。实验表明,该文提出的方法能准确获取驾驶员闭眼和打哈欠的次数,疲劳特征为后续疲劳检测提供了依据。 Aiming at the problem of operation accident caused by fatigue driving of excavator driver,an excavator driver fatigue feature extraction method based on facial information is presented.Firstly,the face and eye regions are located based on AdaBoost algorithm,and the mouth is positioned according to the facial features of“three courts and five eyes”.Then,the eye image is binarized by Otsu algorithm,and the eye state is judged by its vertical integral projection.Finally,the mouth edge detection method based on Canny algorithm is used to obtain the mouth roundness to judge the mouth state.Experiments show that this method can accurately obtain the times of eyes closure and yawning of the driver,and the fatigue characteristics provide a basis for subsequent fatigue detection.
作者 李蓉 殷晨波 马伟 冯浩 LI Rong;YIN Chenbo;MA Wei;FENG Hao(School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211800, China)
出处 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2020年第10期1341-1345,1409,共6页 Journal of Hefei University of Technology:Natural Science
基金 工信部关键液压元件可靠性提升资助项目(0714-EMTC-02-00573/4)。
关键词 挖掘机 ADABOOST算法 垂直积分投影 Canny检测 疲劳特征提取 excavator AdaBoost algorithm vertical integral projection Canny detection fatigue feature extraction
  • 相关文献

参考文献4

二级参考文献32

  • 1胡振涛,刘先省.一种实用的数据融合算法[J].自动化仪表,2005,26(8):7-9. 被引量:25
  • 2张志刚,周明全,耿国华.人脸关键特征点自动标定研究[J].计算机工程与应用,2007,43(21):197-198. 被引量:10
  • 3Grace R, Byrne V E, Bierman D M, et al. A Drowsy Driver Detection System for Heavy Vehicle[C]//Proc of the 17th Digital Avionics Systems Conference, 19 9 8 :1-8.
  • 4Gan L, Cui B, Wang W. Driver Fatigue Detection Based on Eye Tracking[C]//Proc of the 6th World Congress on Intel ligent Control and Automation, 2006:649-652.
  • 5Dong W, Wu X. Driver Fatigue Detection Based on The Dis- tance of Eyelid[C]//Proc of the IEEE Int'lWorkshop VLSI Design & Video Technology, 2005:365-368.
  • 6Horng W B, Chen C-Y, Chang Y, et al. Driver Fatigue De- tection Based on Eye Tracking and Dynamic Template Matc- hing[C]//Proc of the Int'l Conf on Networking, Sensing Control, 2004 :7-12.
  • 7Zhang Z, Zhang J. A New Real-Time Eye Tracking for Driv- er Fatigue Detection[C]//Proc of the 6th Int'l Conf on ITS Telecommunications, 2006 :8-11.
  • 8Wang Q, Yang J, Ren M, et al. Driver Fatigue Detection: A Survey[C]//Pruc of the 6th World Congress on Intelligent Control and Automation, 2006:8587-8591.
  • 9Gu H, Ji Q. An Automated Face Reader for Fatigue Detec- tion[C]//Proc of the 6th IEEE Int'l Conf on Automatic Face and Gesture Recognition, 2004:111-116.
  • 10Viola P, Jones M J. Rapid Object Detection Using a Boos ted Cascade of Simple Features[J]. Computer Vision and Pattern Recognition, 2001(1) :511-518.

共引文献24

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部