期刊文献+

常微分不等式及其在半线性波动方程的应用 被引量:1

Improved Ordinary Differential Inequality and Its Application to Semilinear Wave Equations
下载PDF
导出
摘要 该文首先得到两类变系数的常微分不等式的爆破结果,可视为文献[3,定理3.1]的推广.其次,作为改进的常微分不等式的一个应用,考虑具有尺度不变阻尼项的半线性波动方程的柯西问题,给予初值合理假设,得到当μ>1和1<p<1+2/n时解的生命跨度的上界估计.该结果的证明方法主要来自于文献[11]. In this paper,we first derive some blow-up results for two ordinary differential inequalities with variable coefficients,which are the generalizations of Theorem 3.1 in Li and Zhou[3].Second,as an application of the improved ordinary differential inequality,we consider the Cauchy problem for the semilinear wave equation with scale-invariant damping and deduce the upper bound of the lifespan for the caseμ>1 and 1<p<1+2/n under some suitable assumptions for the initial data.The method for the latter result is due to Lai and Zhou[11].
作者 黄守军 孟希望 Huang Shoujun;Meng Xiwang(School of Mathematics and Statistics,Anhui Normal University,Anhui Wuhu 241002)
出处 《数学物理学报(A辑)》 CSCD 北大核心 2020年第5期1319-1332,共14页 Acta Mathematica Scientia
基金 国家自然科学基金(11301006) 安徽省自然科学基金(1408085MA01)。
关键词 常微分不等式 半线性波动方程 生命跨度 Ordinary differential inequality Semilinear wave equation Lifespan
  • 相关文献

参考文献1

二级参考文献14

  • 1Georgiev,V.,Lindblad,H.and Sogge,C.D.,Weighted Stricharz estimates and global existence for semilinear wave equations,Amer.J.Math.,119,1997,1291-1319.
  • 2Glassey,R.T.,Finite-time blow-up for solutions of nonlinear wave equations,Math.Z.,177,1981,323-340.
  • 3Glassey,R.T.,Existence in the large for □u = F(u) in two space dimensions,Math.Z.,178,1981,233-261.
  • 4John,F.,Blow up of solutions of nonlinear wave equations in three space dimensions,Manuscripta Math.,28,1979,235-268.
  • 5Schaeffer,J.,The equation □u = |u|^p for the critical value of p,Proc.Royal Soc.Edinburgh,101,1985,31-34.
  • 6Sideris,T.C.,Nonexistence of global solutions to semilinear wave equations in high dimensions,J.Differential Equations,52,1984,378-406.
  • 7Strauss,W.A.,Nonlinear scattering theory at low energy,J.Funct.Anal.,41,1981,110-133.
  • 8Takamura,H.,An elementary proof of the exponential blow-up for semilinear wave equations,Math.Meth.Appl.Sci,17,1994,239-249.
  • 9Tataru,D.,Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equations,Trans.Amer.Math.Soc.,353,2001,795-807.
  • 10Yordanov,B.T.and Zhang,Q.S.,Finite time blow up for critical wave equations in high dimensions,Journal of Funct.Anal.,231,2006,367-374.

共引文献21

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部