期刊文献+

基于加速度反馈增强的旋翼无人机抗风扰控制 被引量:11

Acceleration Feedback Enhanced Controller for Wind Disturbance Rejection of Rotor Unmanned Aerial Vehicle
原文传递
导出
摘要 为了提高无人机的风扰抑制能力,实现无人机安全飞行和精准控制,提出了一种基于加速度反馈的旋翼无人机抗风扰方法.该方法不需要改变原有的控制器结构,在原有的控制器基础上引入角加速度和线加速度反馈,从而实现更快速且更高精度的角度和位置跟踪,提升系统的扰动抑制能力.同时,为了将该算法部署在实际的无人机平台上,提出了一种简单、快速以及适用于加速度反馈的无人机参数辨识方法.结合该方法,将加速度反馈应用到一个六旋翼机上,并在户外持续风和阵风扰动环境下进行了实验验证.实验结果表明,加速度反馈增强型控制器可以有效地抑制这两种风扰,极大地提高了风扰条件下的无人机控制精度. In order to enhance the wind rejection ability of unmanned aerial vehicle(UAV) to achieve safe flight and precision control, a wind disturbance rejection method based on acceleration feedback(AF) is proposed for rotor UAV.By introducing linear and angular AF into the original controller, a faster and more accurate attitude and position tracking performance can be obtained without changing the structure of the original controller. Moreover, a simple and fast UAV parameters identification method suitable for acceleration feedback is proposed to deploy AF on a practical UAV system. By using the proposed method, AF is deployed on a hex-rotor and tested in outdoor environment with continuous or gusty winds.The experimental results demonstrate that the AF enhanced controller can suppress these two kinds of wind disturbances effectively and the control accuracy of UAV system is greatly improved.
作者 代波 何玉庆 谷丰 王骞翰 徐卫良 DAI Bo;HE Yuqing;GU Feng;WANG Qianhan;XU Weiliang(State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China;Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang 110016,China;University of Chinese Academy of Sciences,Beijing 100049,China;University of Auckland,Auckland 1010,Nexv Zealand)
出处 《机器人》 EI CSCD 北大核心 2020年第1期79-88,共10页 Robot
基金 国家重点研发计划(2017YFD0701002,2018YFC0810100) 国家自然科学基金联合基金(U1608253)。
关键词 无人机 加速度反馈 抗风扰 参数辨识 unmanned aerial vehicle acceleration feedback wind disturbance rejection parameter identification
  • 相关文献

参考文献3

二级参考文献53

  • 1许燕,胡广书,商丽华,耿进朝.基于Hessian矩阵的冠状动脉中心线的跟踪算法[J].清华大学学报(自然科学版),2007,47(6):889-892. 被引量:13
  • 2Yoo C S, Ahn I K. Low cost GPS/INS sensor fusion system for UAV navigation[C]//Proceedings of the 22nd Digital Avionic-s Systems Conference: vol.2. Piscataway, USA: IEEE, 2003: 8.A.1-1-9.
  • 3Farhad A, Marcin K, Galina O. Fault-tolerant position/attitude estimation of free-floating space objects using a laser range sen- sor[J]. IEEE Sensors Journal, 2011, 11(1): 176-185.
  • 4Zhao H, Wang Z Y. Motion measurement using inertial sensors, ultrasonic sensors, and magnetometers with extended Kalman filter for data fusion[J]. IEEE Sensors Journal, 2012, 12(5): 943- 953.
  • 5Klose S, Wang J, Achtelik M. Markerless, vision-assisted flight control of a quadrocopter[C]//IEEE/RSJ International Confer- ence on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2010: 5712-5715.
  • 6Grzonka S, Grisetti G, Burgard W. A fully autonomous indoor quadrotor[J]. IEEE Transactions on Robotics, 2012, 28(1): 90- 100.
  • 7Meier L, Tanskanen P, Heng L. PIXHAWK: A micro aerial ve- hicle design for autonomous flight using onboard computer vi- sion[J]. Autonomous Robots, 2012, 33(1/2): 21-39.
  • 8Artieda J, Sebastian J, Campoy E Visual 3-D SLAM from UAVs[J]. Journal of Intelligent and Robotic Systems, 2009, 55(4/5): 299-321.
  • 9de Marina H G, Pereda F J, Giron-Sierra J M, et al. UAV attitude estimation using unscented Kalman filter and TRIAD[J]. IEEE Transactions on Industrial Electronics, 2012, 59(11): 4465- 4474.
  • 10Mondragon I F, Olivares-Mendez M A, Campoy P, et al. Un- manned aerial vehicles UAVs attitude, height, motion estima- tion and control using visual systems[J]. Autonomous Robots, 2010, 29(1): 17-34.

共引文献98

同被引文献85

引证文献11

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部