期刊文献+

MI和改进PCA的降维算法在股价预测中的应用 被引量:8

Application of Mutual Information and Improved PCA Dimensionality Reduction Algorithm in Stock Price Forecasting
下载PDF
导出
摘要 考虑到单个特征对标签的有效性及多特征之间的信息冗余问题,提出一种联合互信息和改进PCA的双重降维方法。利用互信息对众多的特征进行初步筛选,舍弃一部分对标签信息贡献较低的特征,使用累积方差贡献率和复相关系数共同确定主元个数的主成分分析法进行二次降维,不仅保证了主元模型的信息容量,同时也避免了过多噪声的参与,从而保证了预测过程的准确性。通过神经网络对实际股票数据进行预测,表明了提出的降维算法的有效性。 Considering the validity of a single feature on a tag and the information redundancy between multiple features,a method of mutual information combine with improving PCA for double dimensionality reduction are proposed.The mutual information is used to initially select a part of features from a large number of features,and some features that contribute less to the tag information are discarded.The principal component analysis method that uses the cumulative variance contribution rate and the multi-correlation coefficient to determine the number of principal elements is used for secondary dimensionality reduction.It not only ensures the information capacity of the principal component model,but also avoids the participation of excessive noise,thus ensuring the accuracy of the prediction process.The prediction of a single stock data through neural network shows the effectiveness of the dimensionality reduction algorithm proposed in this paper.
作者 谢心蕊 雷秀仁 赵岩 XIE Xinrui;LEI Xiuren;ZHAO Yan(Department of Computational Mathematics,School of Mathematics,South China University of Technology,Guangzhou 510640,China;Department of Probability Theory and Mathematical Statistics,School of Mathematics,South China University of Technology,Guangzhou 510640,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第21期139-144,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.11572127)。
关键词 互信息 改进PCA 双重降维 神经网络预测 Mutual Information(MI) improved PCA double dimensionality reduction neural network prediction
  • 相关文献

参考文献5

二级参考文献74

  • 1肖应旺,徐保国.改进PCA在发酵过程监测与故障诊断中的应用[J].控制与决策,2005,20(5):571-574. 被引量:17
  • 2刘飞,王一竹.基于Q统计量的工业过程监控实例分析[J].计算机与应用化学,2006,23(7):631-634. 被引量:6
  • 3Flores--Cerrillo Jesus, MacGregor John F. Latent variable MPC for trajectory tracking in batch processes [J]. Journal of Process Control, 2005, 15 (6): 651--663.
  • 4Valle S, Li W, Qin S. J. Selection of the number of principal components: the variance of the reconstruction error criterion with a comparison to other methods [J]. Ind. Eng. Chem. Res. , 1999, 38: 4389--4401.
  • 5Dunia R, Qin S. J. Subspaee approach to multidimensional fault identification and reconstruction[J].AIChE J, 1998, 44: 1813--1831.
  • 6Dahl K S, Piovoso M J, Kosanovich K A. Translating thirdorder data analysis methods to chemical batch processes[J].Chemom Intell Lab Syst, 1999, 46 (2): 161--180.
  • 7SCHUTZE H, HULL D A, PEDERSEN J O. A comparison of classifiers and document representations for the routing problem[ C ]//Proc of the 18th ACM Int Conf on Research and Development in Information Retrieval. New York : ACM, 1995:229- 237.
  • 8CUTTING D R, KARGER D R, PEDERSON J O, et al. Scatter/gather:a cluster-based approach to browsing large document collections [ C ]//Proc of the 15th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York:ACM, 1992:315- 329.
  • 9SCHUTEZ H, SILVERSTEIN C. Projections for efficient document clustering[ C]//Proc of the 20th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 1997,74-81.
  • 10DHILLON I S, MALLELA S, MODHA S. Information theoretic coclustering[C]//Proc of the 9th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York:ACM,2003:89-98.

共引文献186

同被引文献97

引证文献8

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部