期刊文献+

全偏振参量低秩稀疏分解伪彩色图像融合 被引量:1

Full polarization parameters low-rank and sparse factorization for pseudo color image fusion
下载PDF
导出
摘要 偏振图像伪彩色融合对提高视觉感知和目标判读具有重要意义,利用空间调制型全偏振参量矩阵的低秩和稀疏特性,提出基于贝叶斯概率鲁棒性矩阵分解融合方法。首先,根据偏振调制和解析算法构造偏振参量矩阵,同时合成强度图像;其次,对参量矩阵进行基于改进的贝叶斯概率参量矩阵分解,降低背景噪声和亮度变化等干扰,分别获得参量图像的稀疏和低秩成分;然后利用方差、清晰度和信息熵进行模糊积分,获得显著性参量图像,与合成强度图像一起进行像素级增强;最后,经直方图规定化和IHS颜色映射,得到伪彩色融合结果。实验选择多种材质与目标的仿真和实测数据进行验证,通过主观视觉效果和客观指标比较,验证了其有效性。 The polarization image pseudo color fusion is of great significance to improve visual perception and object interpretation.Based on the low-rank and sparse prior of the spatially modulated full-polarization parameter matrix,a fusion method is proposed via Bayesian probability robust matrix factorization.Firstly,the polarization parameter matrix is constructed according to the polarization modulation and analytic algorithm,and the intensity image is synthesized at the same time.Secondly,the sparse and low-rank components of the parameter images are obtained via improved Bayesian robust matrix factorization(BRMF).The influence of background noise and brightness change is reduced via BRMF.Then,the saliency parameter image is obtained by using the Choquet fuzzy integral of variance,definition and entropy.The saliency parameter image is carried out together with the synthesized intensity image to enforce pixel level enhancement.Finally,the pseudo color fusion image is obtained by the processing of histogram normalization and IHS color mapping.The experiment is performed with simulation and measurement images of different materials and objects.The subjective visual results and objective evaluation verify the effectiveness of the proposed method.
作者 徐国明 袁宏武 薛模根 王峰 XU Guoming;YUAN Hongwu;XUE Mogen;WANG Feng(College of Internet, Anhui University, Hefei 230039, China;Information Engineering College, Anhui Xinhua University, Hefei 230088, China;Anhui Province Key Laboratory of Polarized Imaging Detecting Technology, Army Artillery and Air Defense Forces Academy, Hefei 230031, China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2020年第11期2450-2460,共11页 Systems Engineering and Electronics
基金 国家自然科学基金(61379105) 安徽省自然科学基金(1608085MF140,1908085MF208) 中国博士后科学基金(2016M592961) 陆军装备部十三五预研子课题(GFZX0403260204) 安徽省高校自然科学研究重点项目(KJ2018A0587,KJ2019A0906)资助课题。
关键词 偏振成像 图像融合 低秩稀疏 鲁棒性矩阵分解 polarization imaging image fusion low-rank and sparse robust matrix factorization
  • 相关文献

参考文献7

二级参考文献48

  • 1苗启广,王宝树.基于非负矩阵分解的多聚焦图像融合研究[J].光学学报,2005,25(6):755-759. 被引量:25
  • 2THILAK V,VOELZ D G,CREUSERE C D.Polarization-based index of refraction and reflection angle estimation for remote sensing applications[J].Appl Opt,2007,46(30):7527-7536.
  • 3TYO J S,GOLDSTEIN D L,CHENAULT D B,et al.Review of passive imaging polarimetry for remote sensing applications[J].Appl Opt,2006,45(22):5453-5469.
  • 4TOET A.Natural colour mapping for multiband night vision imagery[J].Information Fusion,2003,4(3):155-166.
  • 5WOLFF L B.Polarization vision:a new sensory approach to image understanding[J].Image and Vision Computing,1997,15(2):81-93.
  • 6JIHAD S Z,ANTONELLO D M.Physical interpretation of polarization-encoded images by color preview[J].Opt Exp,2006,14(13):5916-5927.
  • 7OLSEN R C,EYLER M,PUETZ A M,et al.Initial results and field applications of a polarization imaging camera[C].SPIE,2009:7461-7470.
  • 8ZHAO Y,ZHANG L,ZHANG D,et al.Object separation by polarimetric and spectral imagery fusion[J].Computer Vision and Image Understanding,2009,113(8):855-866.
  • 9LEE D D,SEUNG H S.Learning the parts of objects by non-negative matrix factorization[J].Nature,1999,401(21):788-791.
  • 10ACHANTA R,ESTRADA F,WILS P,et al.Salient region detection and segmentation:Computer Vision Systems:proceedings of the 6th International Conference,ICVS 2008 Santorini,Greece,Many 12-15,2008[C].Berlin:Springer,2008:66-75.

共引文献54

同被引文献15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部