期刊文献+

组网冗余MEMS惯性传感器网络优化配置与融合处理方法 被引量:6

Networking redundant MEMS inertial sensor network optimal configuration and fusion processing method
下载PDF
导出
摘要 针对单个惯性传感器精度与可靠性问题,提出了一种组网冗余微机电系统(micro-electro-mechanical system,MEMS)惯性传感网络优化配置与融合处理方法。首先,研究了多惯性传感器节点的空间配置形式,给出了网络观测模型。利用节点之间的最优化冗余配置策略,提升系统测量可靠性。在此基础上,进一步考虑MEMS陀螺仪和加速度计的安装误差对输出结果的影响,提出了相应的误差模型及校正算法。以随机游走为主要误差源,设计了新型的卡尔曼滤波方法,实现了冗余配置下的高精度导航信息解算。最后,采用自主构建的实验系统进行试验,证明所提出的融合方法能够有效降低陀螺仪和加速度计的随机游走误差。车载试验进一步证明了所提出的方法及系统的有效性。 To improve the precision and reliability of the single inertial sensor,an optimal configuration and fusion processing method of inertial sensing network for the network redundant micro-electro-mechanical system(MEMS)is proposed.Firstly,the spatial configuration of multi-inertial sensor nodes is investigated,and the network observation model is proposed.By utilizing the optimal redundancy configuration,the reliability of the system is improved.On the basis,the impacts of the installation errors for the MEMS gyroscope and the accelerometer on output are further considered,the error model and the correction algorithm are proposed.By setting the random walk as the major error source,a novel Kalman filter method is designed,and the navigation information with high precision is calculated under the condition of redundancy configuration.The experiments on a self-built system show that the proposed fusion method can substantially reduce the random walk errors of the gyroscope and the accelerometer.The on-vehicle test further verifies the effectiveness of the proposed method and system.
作者 马龙 刘宇哲 代超璠 周航 孙凤鸣 MA Long;LIU Yuzhe;DAI Chaofan;ZHOU Hang;SUN Fengming(Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China;Beijing Aeronautical Science & Technology Research Institute, Commercial Aircraft Corporation of China, Beijing 102211, China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2020年第11期2591-2599,共9页 Systems Engineering and Electronics
基金 国家自然科学基金委员会与中国民用航空局联合资助项目(U1633101) 中央高校基本科研业务费中国民航大学专项(3122018Z002)资助课题。
关键词 惯性传感网络 最优配置 冗余结构 误差模型 卡尔曼滤波 inertial sensing network optimal configuration redundant structure error model Kalman filter
  • 相关文献

参考文献4

二级参考文献44

  • 1李建利,房建成.改进的MEMS陀螺静态误差模型及标定方法[J].宇航学报,2007,28(6):1614-1618. 被引量:10
  • 2张鹏,常洪龙,苑伟政,胡敏.虚拟陀螺技术研究[J].传感技术学报,2006,19(05B):2226-2229. 被引量:10
  • 3Kain J E,Cloutier J R.Rapid transfer alignment for tactical weapon applications[R].AIAA-89-3581.
  • 4Spalding K.An efficient rapid transfer alignment filter[C]//AIAA Guidance,Navigation and Control Conference.1992:1276-1286.
  • 5Carlson N A,Kelley R T,Berning S L.Differential inertial filter for dynamic sensor alignment[C]//Proceedings of the 1994 National Technical Meeting of The Institute of Navigation.1994:341-351.
  • 6Pehlivano(g)lu A G,Ercan Y.Investigation of flexure effect on transfer alignment performance[J].Journal of Navigation,2013,66(1):1-15.
  • 7Richards L,Parker A R,Ko W L,et al.Real-time in-flight strain and deflection monitoring with fiber optic sensors[R].Dryden Flight Research Center,Edwards,CA,August 5,2008.
  • 8Y(IG)TER Y(U)KSEL.Design and analysis of transfer alignment algorithms[D].Turkey,Ankara:Middle East Technical University,2005.
  • 9Kannemans H.Flight testing of a wing deflection measurement method[C]//AIAA-95-3434,1995:95-104.
  • 10Kelley R T,Carlson N A,Berning S.Integrated inertial network[C]//Proceedings of the IEEE Position Location and Navigation Symposium,1994:439-446.

共引文献22

同被引文献75

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部