摘要
为应对高比例新能源接入给系统频率稳定性带来的不利影响,除开发新能源参与调频的控制策略外,还需提高系统自身的调频能力。系统调频关键参数决定了系统的调频能力,分析调频关键参数对系统频率响应指标的影响是选择调频关键参数、提升电网频率响应的关键。在频率响应模型的基础上,理论分析了包括惯性时间常数、调频死区、调差系数等频率控制关键参数对系统频率特性的影响。并对上述参数进行了灵敏度分析,确定了不同参数对频率响应指标的影响程度。利用电力系统分析综合程序(PSASP)建立36节点系统模型对理论分析结果进行了仿真验证,为调频关键参数选取提供了参考。基于研究结果对新能源参与系统调频的定位进行了分析。
High penetration of renewable power brings challenges to frequency stability.To solve this problem,one solution is to develop frequency control strategies for the renewable generation.It is also necessary to improve the frequency control capability of the system.The key parameters of frequency control determine the frequency control capability of the system,and the analysis of their influence on frequency response is the key to selecting proper parameters and improving the frequency response of the power grid.Based on the system frequency response model,the influence of key parameters of frequency control including inertia time constant,frequency control dead band and adjustment coefficient on frequency response characteristics is theoretically analyzed.The sensitivity of the key parameters is analyzed,and the influential level of the parameters on the indices of the frequency response is obtained.The Power System Analysis Software Package(PSASP)is used to verify the results with a 36-node system.The results can be helpful for the selection of frequency control parameters.Based on the results,the role of the renewable energies participating in frequency control is analyzed.
作者
王凡
李海峰
胥国毅
金涛
刘方蕾
闫家铭
毕天姝
WANG Fan;LI Haifeng;XU Guoyi;JIN Tao;LIU Fanglei;YAN Jiaming;BI Tianshu(State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(North China Electric Power University),Beijing 102206,China;State Grid Jiangsu Electric Power Co.,Ltd.,Nanjing 210000,China)
出处
《电力系统保护与控制》
EI
CSCD
北大核心
2020年第20期1-8,共8页
Power System Protection and Control
基金
国家自然科学基金项目资助(51725702)
中央高校基本科研业务费项目资助(2019MS008)
国网江苏省电力有限公司科技项目资助(SGJS0000DKJS1900761)“含高比例新能源的受端电网频率稳定控制研究”。
关键词
惯性时间常数
死区
调差系数
频率特性
灵敏度分析
inertial time constant
dead band
adjustment coefficient
frequency characteristics
sensitivity analysis