期刊文献+

大数据环境下企业安全绩效管理的基础性问题 被引量:8

Basic problems of safety performance management in enterprises under big data environment
下载PDF
导出
摘要 为明晰大数据对安全绩效管理的影响,把握信息时代下企业安全绩效管理的研究方向,基于大数据时代下安全绩效管理内容,阐述数据驱动下安全绩效管理的应用优势,探讨数据驱动下安全绩效管理的研究变革,剖析大数据环境下企业安全绩效管理的数据流向,构建数据驱动下安全绩效管理的框架模型,并提出数据驱动下企业安全绩效管理应用对策。结果表明:基于大数据的安全绩效管理有助于提升企业安全管理水平,也为安全生产系统优化提供理论依据。 To clarify the impact of big data on the safety performance management,then grasp the research direction of enterprises’safety performance management in the information age,based on the contents of safety performance management in the era of big data,the application advantages of data-driven safety performance management were expounded,and the research transformation of data-driven safety performance management was discussed.Then,the data flow direction of safety performance management in the enterprises under the big data environment was analyzed,a framework model of data-driven safety performance management was constructed,and the application countermeasures of data-driven safety performance management in the enterprises were put forward.The results showed that the safety performance management based on big data contributes to improve the safety management level of enterprises,and also provides theoretical basis for the optimization of work safety system.
作者 康良国 吴超 KANG Liangguo;WU Chao(School of Resources and Safety Engineering,Central South University,Changsha Hunan 410083,China;Safety & Security Theory Innovation and Promotion Center,Central South University,Changsha Hunan 410083,China)
出处 《中国安全生产科学技术》 CAS CSCD 北大核心 2020年第10期5-11,共7页 Journal of Safety Science and Technology
基金 国家自然科学基金重点项目(51534008)。
关键词 安全绩效 绩效管理 安全管理 大数据 数据驱动 safety performance performance management safety management big data data-driven
  • 相关文献

参考文献9

二级参考文献231

  • 1王飞跃.人工社会、计算实验、平行系统——关于复杂社会经济系统计算研究的讨论[J].复杂系统与复杂性科学,2004,1(4):25-35. 被引量:234
  • 2坂田昌一,张质贤.理论物理学和自然辩证法[J].自然辩证法通讯,1965(1):40-47. 被引量:1
  • 3叶舒宪.“地方性知识”[J].读书,2001(5):121-125. 被引量:131
  • 4沃野.关于社会科学定量、定性研究的三个相关问题[J].学术研究,2005(4):41-47. 被引量:55
  • 5Nature. Big Data [EB/OL]. [2012-10-02]. http,//www. nature, com/news/specials/bigdata/index, html.
  • 6Bryant R E, Katz R H, Lazowska E D. Big-Data computing : Creating revolutionary breakthroughs in commerce, science, and society [R]. [2012-10-02]. http:// www. cra. org/ccc/docs/init/Big_Data, pdf.
  • 7Science. Special online collection: Dealing with data [EB/OL]. [2012-10-02]. http://www, sciencemag, org/site/ special/data/, 2011.
  • 8Agrawal D, Bernstein P, Bertino E, et al. Challenges and opportunities with big data A community white paper developed by leading researchers across the United States [R/OL]. [2012-10-02]. http://cra, org/ccc/docs/init/bigdata whitepaper, pdf.
  • 9Manyika J, Chui M, Brown B, et al. Big data: The next frontier for innovation, competition, and productivity [R/OL]. [ 2012-10-02 ]. http://www, mekinsey, corn/ Insights]MGI[Research/Teehnology _ and _ Innovation]Big _ data The next frontier for innovation.
  • 10World Economic Forum. Big data, big impact: New possibilities for international development [R/OL]. [2012- 10-02]. http://www3, weforum, org/docs/WEF TC MFS BigDataBigImpact_Briefing 2012. pdf.

共引文献2558

同被引文献88

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部