期刊文献+

K-Means聚类算法及其性能优化研究 被引量:4

K-means Clustering Algorithm and Its Application in Data Analysis
下载PDF
导出
摘要 K-Means聚类算法是一种无监督的聚类算法,实现起来相对简单,有很好的聚类效果,并具有较高的可解释性,了解K-Means聚类算法在数据分析中的具体应用至关重要。提出K-Means聚类算法的优缺点及性能优化,并结合图像处理进行应用分析,研究表明,可以被推广到相关领域进行分析应用。 The K-Means clustering algorithm is an unsupervised clustering algorithm,which is relatively simple to implement,has a good clustering effect,and has high interpretability.Understand the K-Means clustering algorithm in data analysis,the specific application is critical.The advantages and disadvantages of K-Means clustering algorithm and performance optimization are proposed,and combined with image processing for application analysis,the research shows that it can be extended to related fields for analysis and application.
作者 刘骏 喻青 LIU Jun;YU Qing(Wuxi Unicomp Technology Co.,Ltd,Wuxi 214145,China)
出处 《电子工业专用设备》 2020年第5期46-49,共4页 Equipment for Electronic Products Manufacturing
关键词 K-MEANS聚类算法 数据分析 应用研究 K-Means clustering algorithm Data analysis Application research
  • 相关文献

参考文献3

二级参考文献13

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2Zhang W,Proc 23rd VL DB Conf,1997年,186页
  • 3Chen M S,IEEE Trans Knowledge Data Engineering,1996年,8卷,6期,866页
  • 4Zhang T,Proc ACM SIGMOD Int Conf on Management of Data,1996年,73页
  • 5Ng R T,Proc 20th VLDB Conf,1994年,144页
  • 6Han JW, Kamber M. Data Mining: Concepts and Techniques. 2nd ed., San Francisco: Morgan Kaufmann Publishers, 2001. 223-250.
  • 7Ester M, Kriegel HP, Sander J, Xu XW. A density-based algorithm for discovering clusters in large spatial database with noise. In: Simoudis E, Han J, Fayyad UM, eds. Proc. of the 2nd Int'l Conf. on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996. 226-231.
  • 8Zhang T, Ramakrishnan R, Linvy M. BIRCH: An efficient data clustering method for very large databases. In: Jagadish HV, Mumick IS, eds. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. Montreal: ACM Press, 1996. 103-114.
  • 9Guha S, RastogiR, Shim K. CURE: An efficient clustering algorithm for large databases. In: Haas LM, Tiwary A, eds. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. New York: ACM Press, 1998. 73-84.
  • 10Ankerst M, Breuning M, Kriegel HP, Sander J. OPTICS: Ordering points to identify the clustering structure. In: Delis A, Faloutsos C, Ghandeharizadeh S, eds. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. Philadelphia: ACM Press, 1999. 49-60.

共引文献1260

同被引文献24

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部