摘要
针对神经网络自主靠泊控制器只能完成特定港口的靠泊,而无法拓展到其他没有训练数据的泊位这一问题,提出一种以泊位顶点为原点,岸线为y轴的坐标系(泊位坐标系)。采用泊位坐标系中相对位置来训练神经网络控制器,在V.Dragon-5000航海模拟器中选取集装箱船"银河号",在大连港进行靠泊训练后,成功将靠泊控制器拓展到没有训练数据的深圳蛇口港与新加波樟宜港。仿真验证了采用新建立的坐标系可以拓展神经网络自主靠泊控制器适用范围,减小训练数据所需的成本。
Aiming at the problem that the neural network autonomous docking controllers can only complete the docking of a specific ports,but cannot extend to other ports without training data,a coordinate system(berth coordinates with the berth vertex as theorigin and the shoreline as the Y Axis)is proposed.The relative position is used to train the controller.In V.Dragon-5000 navigation simulator,the container ship"Yinhe"is selected.After docking training at Dalian port,the docking controller is successfully extended to Shenzhen Shekou port and Singapore Changi port without training data.The simulation verifies that the application of the newly established coordinate system can greatly expand the application range of the neural network autonomous docking controller and reduce the cost required for training data.
作者
贾玉鹏
尹勇
朱忠显
Jia Yupeng;Yin Yong;Zhu Zhongxian(Key Laboratory of Marine Simulation&Control for Ministry of Transportation,Dalian 116026,China;Marine Engineering College,Dalian Maritime University,Dalian 116026,China)
出处
《系统仿真学报》
CAS
CSCD
北大核心
2020年第10期1910-1917,共8页
Journal of System Simulation
基金
高技术船舶科研项目(2018-473)
中央高校基本科研业务费(3132019312)。
关键词
无人船
自主靠泊
泊位坐标
神经网络控制器
航海模拟器
unmanned ship
automatic ship berthing
berth coordinates
ANN controller
navigation simulation