期刊文献+

并行多模型融合的混合神经网络超短期负荷预测 被引量:17

Ultra-short-term Load Forecasting Using Hybrid Neural Network Based on Parallel Multi-model Combination
原文传递
导出
摘要 针对输入数据特征多时负荷预测模型精度提升难的问题,文章提出一种并行多模型融合的混合神经网络超短期负荷预测方法。将卷积神经网络(convolutional neural network,CNN)与门控循环单元神经网络(gated recurrent unit neural network,GRU-NN)并行,分别提取局部特征与时序特征,将2个网络结构的输出拼接并输入深度神经网络(deep neural network,DNN),由DNN进行超短期负荷预测。最后应用负荷与温度数据进行预测实验,结果表明相比于GRUNN网络结构、长短期记忆(long short term memory,LSTM)网络结构、串行CNN-LSTM网络结构与串行CNN-GRU网络结构,所提方法具有更好的预测性能。 For the purpose of addressing the difficulty of improving load forecasting accuracy brought by enormous input data features,a method based on hybrid neural network using parallel multi-model combination is proposed.In order to respectively extract local features and time-series features,this paper places the convolutional neural network(CNN)in parallel with the gated recurrent unit(GRU)structure,then concatenates the output of two network structures and inputs to a deep neural network,uses deep neural network to perform load forecasting.Through a prediction experiment of load and temperature data by using the proposed method,the experiment results showthat,compared with GRU-NN model,long short term memory(LSTM)model,serial CNN-LSTM network model and serial CNN-GRU network model,the proposed method shows better prediction performance.
作者 庄家懿 杨国华 郑豪丰 王煜东 胡瑞琨 丁旭 ZHUANG Jiayi;YANG Guohua;ZHENG Haofeng;WANG Yudong;HU Ruikun;DING Xu(School of Physics and Electronic-Electrical Engineering,Ningxia University,Yinchuan 750021,China;Ningxia Key Laboratory of Electrical Energy Security,Yinchuan 750021,China)
出处 《电力建设》 北大核心 2020年第10期1-8,共8页 Electric Power Construction
基金 国家自然科学基金项目(61763040) 宁夏自治区重点研发项目(2018BFH03004) 宁夏自治区自然科学基金项目(NZ17022)。
关键词 超短期负荷预测 卷积神经网络(CNN) 门控循环单元(GRU) 深度神经网络(DNN) 特征提取 ultra-short-term load forecasting convolutional neural network(CNN) gated recurrent unit(GRU) deep neural network(DNN) feature extraction
  • 相关文献

参考文献7

二级参考文献75

共引文献542

同被引文献216

引证文献17

二级引证文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部