期刊文献+

A fault diagnosis model based on weighted extension neural network for turbo-generator sets on small samples with noise 被引量:11

原文传递
导出
摘要 In data-driven fault diagnosis for turbo-generator sets,the fault samples are usually expensive to obtain,and inevitably with noise,which will both lead to an unsatisfying identification performance of diagnosis models.To address these issues,this paper proposes a fault diagnosis model for turbo-generator sets based on Weighted Extension Neural Network(W-ENN).WENN is a novel neural network which has three types of connection weights and an improved correlation function.The performance of the proposed model is validated against Extension Neural Network(ENN),Support Vector Machine(SVM),Relevance Vector Machine(RVM)and Extreme Learning Machine(ELM)based models.The results indicate that,on noisy small sample sets,the proposed model is superior to the other models in terms of higher identification accuracy with fewer samples and strong noise-tolerant ability.The findings of this study may serve as a powerful fault diagnosis model for turbo-generator sets on noisy small sample sets.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第10期2757-2769,共13页 中国航空学报(英文版)
基金 the National Natural Science Foundation of China(No.51775272,No.51005114) The Fundamental Research Funds for the Central Universities,China(No.NS2014050)。
  • 相关文献

参考文献8

二级参考文献82

  • 1Berry J E. How to Track Rolling Element Bearing Health with Vibration Signature Analysis[J]. Journal of Sound and Vibration, 1991,25 (11) : 24-35.
  • 2Alguindigue I E, Loskiewicz-Buezak A, Uhrig R E. Monitoring and Diagnosis of Rolling Element Bearings Using Artificial Neural Networks[J]. IEEE Trans on Industrial Electronics, 1993,40(2) : 209-217.
  • 3Liu X-Y,Wu J, Zhou Z-H. Exploratory Under-Sampling for Class Imbalance Learning[C]//Proc of Int'l Conf on Data Mining, 2006: 965-969.
  • 4Guyon I, Elissee A. An Introduction to Variable and Feature Selection[J]. Journal of Machine Learning Research, 2003, 3:1157-1182.
  • 5Moody J, Utans J. Principled Architecture Selection for Neural Networks:Application to Corporate Bond Rating Predietion[M]//NIPS 4. Morgan Kaufmann Publishers Inc, 1992..683-690.
  • 6Duda R O, Hart P E,Stork D G. Pattern Classification[M]. 2nd ed. New York: John Wiley& Sons, 2001.
  • 7Blake C, Keogh E, Merz C J. UCI Repository of Machine Learning Databases[DB/OL]. [2009-11-10]. http://www. its. uci. edu/mlearn/ MLRepository. html.
  • 8Vapnik V. Statistical learning theory[M]. New York: Wiley, 1998.
  • 9Isermann Rolf. Fault-diagnosis systems: an introductionfrom fault detection to fault tolerance [M]. Berlin: Springer, 2006 : 295 - 310.
  • 10Russell Evan, Chiang L H, Braatz R D. Data-driven methods for fault detection and diagnosis in chemical processes[M]. London: Springer-Verlag London Limited, 2000.

共引文献581

同被引文献156

引证文献11

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部