期刊文献+

不同基底材料对极紫外收集镜聚焦性能的影响

Effect of Different Substrate Materials on Focusing Beam Performance of EUV Collector
原文传递
导出
摘要 仿真分析了不同基底材料对极紫外辐照损伤研究系统中收集镜聚焦性能的影响,包括熔融石英、SiC和AlSi。与熔融石英、SiC等陶瓷材料基底相比,AlSi基底收集镜的导热性能较高,但在极紫外辐照损伤研究系统中,对于300 mm直径的收集镜,当加载10 W功率时,AlSi基底收集镜反射面最高温升为1.39℃。尽管AlSi膨胀系数大于熔融石英和SiC,导致收集镜反射面发生最高为3.51μm结构变形,且相对于理想无变形收集镜,波像差增加8.071λ以及光斑均方根半径增加0.028μm,但AlSi基底收集镜满足极紫外辐照损伤系统的要求。AlSi基底收集镜可用于非成像系统或对成像质量要求不高的系统中,尤其在大口径、复杂面形的收集镜实现上具有明显优势。 The effects of different substrate materials on the focusing performance of the collecting mirror in the extreme ultraviolet(EUV)radiation-damage-test system including fused silica,SiC and AlSi are simulated and analyzed.Compared with ceramic substrates such as fused silica and SiC,the thermal conductivity of AlSi-based collector mirrors is higher,but in the EUV irradiation damage research system,the maximum temperature rise of the surface of the collector on the AlSi substrate is 1.39℃ when the power of 10 W is applied to the 300 mm diameter collector.Although AlSi has larger expansion coefficient than that of fused silica and SiC,the maximum structural deformation of the reflector is 3.51μm,and the wavefront aberration is increased by 8.071λand the root mean square radius of the spot is increased by 0.028μm compared with the ideal non-deformation collector,but the AlSi based collectors can be used in non-imaging systems or systems with low requirements for imaging quality,it has obvious advantage for collectors with large aperture and complex surface.
作者 谢婉露 吴晓斌 王魁波 罗艳 王宇 Xie Wanlu;Wu Xiaobin;Wang Kuibo;Luo Yan;Wang Yu(R&D Center of Optoelectronic Technology,Institute of Microelectronics of Chinese Academy of Sciences,Beijing 100029,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第17期295-300,共6页 Laser & Optoelectronics Progress
基金 国家科技重大专项(2012ZX02702001)。
关键词 X射线光学 极紫外 极紫外收集镜 基底材料 热变形 聚焦性能 X-ray optics extreme ultraviolet extreme ultraviolet collector substrate material thermal deformation focusing performance
  • 相关文献

参考文献4

二级参考文献45

  • 1R Peeters, S Lok, E Alphen, et al.. ASML's NXE platform performance and volume introduction[C]. SPIE, 2013, 8679: 86791F.
  • 2R Peeters, S Lok, J Mailman, et al.. EUV lithography: NXE platform performance overview[C]. SPIE, 2014, 9048: 9048lJ.
  • 3A Erdmann, P Evanschitzky, T Bret, et al.. Analysis of EUV mask muhilayer defect printing characteristics[C]. SPIE, 2012, 8322: 83220E.
  • 4C H Clifford, A R Neureuther. Smoothing based model for images of isolated buried EUV multilayer defects[C]. SPIE, 2008, 6921:692119.
  • 5T Pistor, Y Deng, A Neureuther. Extreme ultraviolet mask defect simulation: low-profile defects[J]. J Vae Sei Teehnol B, 2000, 18(6) 2926-2929.
  • 6P Evanschitzky, A Erdmann. Fast near field simulation of optical and EU masks using the waveguide method[C]. SPIE, 2007, 6533 65330Y.
  • 7C H Clifford, A R Neureuther. Fast simulation of buried EUV mask defect interaction with absorber features[C]. SPIE, 2007, 6517: 65170A.
  • 8E M Gullikson, C Cerjan, D G Stearns, et al.. Practical approach for modeling extreme ultraviolet lithography mask defects[J]. J Vac Sci Technol B, 2002, 20(1): 81-86.
  • 9C Sambale, T Schmoeller, A Erdmann, et al.. Rigorous simulation of defective EUV muhilayer masks[C]. SPIE, 2003, 5256: 1239-1248.
  • 10M CLam, A R Neureuther. Fast simulation methods for defective EUV mask blank inspection[C]. SPIE, 2004, 5567: 741-750.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部