期刊文献+

基于三拉盖尔高斯腔的机械振子基态冷却研究 被引量:2

Ground-State Cooling of Mechanical Resonator in Three-Laguerre-Gaussian-Cavity
原文传递
导出
摘要 将机械振子冷却到基态是实现机械振子量子操控的关键。利用电磁感应透明冷却法,研究了边带不可分辨区域中三拉盖尔高斯腔光力学系统的机械振子基态冷却。在该系统中,两个附加腔场分别与标准的腔光力学系统中的腔场发生了耦合。通过选择系统的最优参数,光学涨落谱从洛伦兹线型变成类似三能级原子系统中电磁诱导透明谱线的形式,冷却和加热速率的不对称使得机械振子被冷却到基态。研究结果为三拉盖尔高斯腔系统中机械振子的冷却提供了理论参考。 To cool a mechanical resonator to its ground-state is the key to realize the quantum manipulation of this mechanical resonator.We propose a cooling method based on electromagnetically-induced-transparency(EIT)and investigate the ground-state cooling of a mechanical resonator in a three-Laguerre-Gaussian-cavity optomechanical system,where two auxiliary cavities are coupled to the original one in the standard optomechanical system,respectively.When the optimal parameters are chosen,the optical fluctuation spectrum changes from Lorentzian shape to EIT-like one in a three-level atomic system.The asymmetry between cooling and heating rates makes it possible to realize the ground-state cooling of a mechanical resonator.The research results here provide a theoretical guidance for the cooling of mechanical resonators in three-Laguerre-Gaussian-cavity systems.
作者 王婧 Wang Jing(College of Physics,Tonghua Normal University,Tonghua,Jilin 134000,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2020年第18期165-171,共7页 Acta Optica Sinica
关键词 量子光学 腔光力学系统 机械振子的基态冷却 边带不可分辨 哈密顿量 quantum optics cavity optomechanical system ground-state cooling of mechanical resonator unresolved sideband Hamiltonian
  • 相关文献

参考文献7

二级参考文献78

  • 1Dorsel A, Mccullen J D, Meystre P, et al.. Optical bistability and mirror confinement induced by radiation pressure[J]. Phys Rev Lett, 1983, 51(17): 1550-1553.
  • 2Vitali D, Gigan S, Ferreira A, et al.. Optomechanical entanglement between a movable mirror and a cavity field[J]. Phys Rev Lett, 2007, 98(3): 030405.
  • 3Hartmann M J, Plenio M B. Steady state entanglement in the mechanical vibrations of two dielectric membranes[J]. Phys Rev Lett, 2008, 101(20): 200503.
  • 4Tian Lin. Robust photon entanglement via quantum interference in optomechanical interfaces[J]. Phys Rev Lett, 2013, 110(23): 233602.
  • 5Wang Y D, Clerk A A. Reservoir-engineered entanglement in optomechanical systems[J]. Phys Rev Lett, 2013, 110(25): 253601.
  • 6Shahidani S, Naderi M H, Soltanolkotabi M. Control and manipulation of electromagnetically induced transparency in a nonlinear optomechanical system with two movable mirrors[J]. Phys Rev A, 2013, 88(5): 053813.
  • 7Vidal G, Werner R F, Computable measure of entanglement[J]. Phys Rev A, 2002, 65(3): 032314.
  • 8Adesso G, Serafini A, Illuminati F. Extremal entanglement and mixedness in continuous variable systems[J]. Phys Rev A, 2004, 70 (2): 022318.
  • 9Kippenberg T J and Vahala K J 2008 Science 321 1172.
  • 10Marquardt F and Girvin S M 2009 Physics 2 40.

共引文献29

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部