期刊文献+

逆半群CkIn的秩

On the Rank of the Inverse Semigroup CkIn
原文传递
导出
摘要 设自然数n>3,SIn与Ck分别是有限链[n]上的部分一一奇异变换半群和k-局部循环群.考虑变换半群“CkIn=Ck∪SIn的秩,证明了当k=1或2<k<n-2时秩为n-k+3,当k=2,n-2,n-1时秩为n-k+2. Let the natural number n>3,SIn and Ck are partial one-to-one singular transformation Semigroup on a finite chain[n]and k-locally cyclic group,respectively.The rank of transformation semigroup CkIn=Ck ∪ SIn is considered.The rank is n-k+3 if k=1 or2<k<n-2,and is n-k+2if k=2,n-2,n-1,be proved.
作者 陈远丽 赵平 王泽平 CHEN Yuan-li;ZHAO Ping;WANG Ze-ping(School of Mathematics Science,GuiZhou Normal University,Guiyang 550025,China)
出处 《数学的实践与认识》 北大核心 2020年第19期193-198,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(11861022)。
关键词 变换半群 k-局部循环群 生成集 transformation semigroup k-locally cyclic group generation set rank
  • 相关文献

参考文献6

二级参考文献61

  • 1罗敏霞,何华灿,马盈仓.一类具有恰当断面的左恰当半群[J].西南师范大学学报(自然科学版),2005,30(3):373-376. 被引量:3
  • 2裴惠生,邹定宇,李连兵.降序且保序的有限全变换半群(英文)[J].信阳师范学院学报(自然科学版),2006,19(4):373-377. 被引量:5
  • 3Barnes G and Levi I. On idempotent ranks of semigroups of partial transformations[J]. Semigroup Forum, 2005(70): 81-96.
  • 4Cherubini A, Howie J M and Piochi B. Rank and status in semigroup theory[J]. Commun Algebra, 2004(32): 2783-2801.
  • 5Garba G U. On the idempotent ranks of certain semigroups of order-preserving transformations[J]. Portugal Math, 1994(51): 185-204.
  • 6Gomes G M S and Howie J M. On the ranks of certain semigroups of order-preserving transformations[J]. Semigroup Forum, 1992(45): 272-282.
  • 7Gomes G M S and Howie J M. On the ranks of certain finite semigroups of transformations[J]. Math Proc Camb Phil Soc, 1987(101): 395-403.
  • 8Howie J M and Ribeiro M I M. Rank properties in finite semigroups[J]. Commun Algebra, 1999(27): 5333-5347.
  • 9Howie J M and McFadden R B. Idempotent rank in finite full transformation semigroups[J]. Proc Roy Soc Edinburgh Sect A, 1990(155): 161-167.
  • 10Levi I. Nilpotent ranks of semigroups of partial transformations[J]. Semigroup Forum, 2006(72): 459-476.

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部