期刊文献+

矩阵空间的二次矩阵基与基秩 被引量:2

The Quadratic Matrix Basis and Base Ranks of Matrix Space
原文传递
导出
摘要 当n≥2时,证明了矩阵空间C^n×n存在着由二次矩阵构成的基(即二次矩阵基),给出了二次矩阵基的基秩及其等价分类的相关不等式,指出当n=2,3时,Cn×n的二次矩阵基秩的等价分类的不等式实质为等式. This paper proves that when n≥2,there exists the basis of matrix space c^n×n composed of quadratic matrices.It shows some inequalities of base ranks of quadratic matrix basis and their equivalence class,and points out that the inequality for the equivalence class of the base ranks of quadratic matrices is an equation actually,when n=2,3.
作者 陈梅香 杨忠鹏 吕洪斌 苏如燕 CHEN Mei-xiang;YANG Zhong-peng;LV Hong-bin;SU Ru-yan(School of Mathematics and Finance,Putian University,Putian 351100,China;School of Mathematics and Statistics,Beihua University,Jilin 132013,China;College of Mathematics and Informatics,Fujian Normal University,Fuzhou 350007,China)
出处 《数学的实践与认识》 北大核心 2020年第19期199-205,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金(61772292) 福建省自然科学基金(2018J01426) 教育部高等教育司产学合作协同育人项目(201901035071) 福建省教育科学“十三五”规划2019年度立项课题(FJJKCG19-070) 莆田学院项目(JG201915)。
关键词 矩阵空间 二次矩阵 基秩 等价分类 数量幂等矩阵 matrix space quadratic matrix base rank equivalence class scalar-idempotent matrix
  • 相关文献

参考文献12

二级参考文献85

  • 1王月清,王爱丽.3个幂等矩阵线性组合的幂等性[J].宝鸡文理学院学报(自然科学版),2005,25(3):167-168. 被引量:7
  • 2左可正.关于幂等矩阵与幂么矩阵的几个秩等式[J].湖北师范学院学报(自然科学版),2005,25(3):4-6. 被引量:5
  • 3吴险峰.对合矩阵的构建方法[J].高师理科学刊,2006,26(4):16-17. 被引量:4
  • 4Halim Ozdemir,Ahmet Angar Ozban. On idempoteney of linear combinations of idempotent matrices [J]. Applied Mathematics and Computation, 2004,159(2) : 439-- 448.
  • 5Oskar Maria Baksatary. Idempotency of linear combinations of three idempotent matrices,two of which are disjoint[J]. Linear Algebra and Its Applications, 2004,388: 67--78.
  • 6Oskar Maria Baksalary,j ulio Benitez. Idempotency of linear combinations of three idempotent, two of which are commuting [J ]. Linear Algebra and Its Applications, 2007,424:320--337.
  • 7Bart H,Ehrhardt T,Silbermann B. Zero sums of idempotents in Banach algebras[J]. Linear and Multilinear Algebra,1994,19(2) :125--134.
  • 8Gross J,Trenkler G. Nonsingularity of defference of two oblique projectors[J]. SIAM J Matrix Anal Appl, 1999, 213(2): 390-395.
  • 9Koliha J J, Rakocevic V, Straskraba I. The difference and sum of proiectors [J ]. Linear Algebra and Its Applications, 2004,388 : 279--288.
  • 10Jeriy K Baoksalary,Oskar Maria Baksalary. Nonsingularity of linear combinations of idempotent matrices[J]. Linear Algebra and its Applications,2004,388:25-29.

共引文献24

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部