期刊文献+

图书推荐服务用户隐私保护方法研究 被引量:1

User Privacy-preserving Method for Book Recommender Services
下载PDF
导出
摘要 用户隐私安全问题正成为制约推荐服务发展应用的障碍.本文以图书推荐为例,构建实现了用户隐私安全的图书推荐服务,其基本思想是:在可信客户端精心伪造用户配置文件,以模糊用户敏感主题,改善用户隐私在不可信服务器端的安全性.首先,给出基于客户端的用户隐私安全的图书推荐框架,它不改变服务器端的推荐算法,也不影响推荐结果的准确性.然后,定义用户隐私模型,以形式化描述可信客户端伪造的配置文件应满足的约束条件.最后,借助于图书分类目录,给出用户隐私模型实现算法.理论分析和实验评估均验证了系统的有效性. Recommender servicescan guide people to obtain target data from a tremendous amount of resources,and has become an important part of people’daily life.How ever,the privacy problem is becoming an important obstacle to the development and application of recommender.Using book recommender as an example,this paper designs and implements a user privacy-preserving book recommender system,w hose basic idea is to construct a group of fake profiles carefully for a user profile on a trusted client,to confuse users’sensitive topics,and thus improve the security of user privacy on the untrusted server.First,a client-based privacy-preserving book recommender framew ork is presented,w hich requires no change to the existing book recommender algorithm on the server,and no compromise to the book recommender accuracy.Then,a user privacy protection model is defined,w hich formally describes the constraints that the fake profiles constructed on the client should meet.Finally,w ith the help of the book classification catalogue,the implementation of user privacy model is presented.The effectiveness of the system is demonstrated by both theoretical analysis and experimental evaluation.
作者 吴宗大 赵又霖 王瑞琴 卢成浪 WU Zong-da;ZHAO You-lin;WANG Rui-qin;LU Cheng-lang(Department of Computer,Shaoxing University,Shaoxing 312000,China;School of Information Management,Nanjing University,Nanjing 210023,China;School of Information Engineering,Huzhou University,Huzhou 313000,China;Zhejiang Institute of Mechanical and Electrical Engineering,Hangzhou 310053,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2020年第10期2051-2055,共5页 Journal of Chinese Computer Systems
基金 浙江省科技项目(2017C33065)资助 浙江省自然科学基金重点项目(LZ18F020001)资助 国家自然科学基金项目(61762055)资助。
关键词 推荐服务 图书推荐 隐私保护 隐私模型 recommender service book recommender privacy protection privacy model
  • 相关文献

参考文献4

二级参考文献50

  • 1刘建华,陆俊.网络时代国家信息安全的文化意义诠释[J].中国公共安全(学术版),2008(Z1):114-118. 被引量:8
  • 2霍全生.美国信息安全政策、法律及其启示[J].公安研究,2002(1):92-96. 被引量:6
  • 3李红枫,王福强.俄罗斯联邦信息安全立法研究(上)[J].信息网络安全,2007(1):25-27. 被引量:5
  • 4张林东.一颗长势良好的“豆瓣”[J].上海信息化,2007(5):76-79. 被引量:7
  • 5Peter Harrington.机器学习实战[M].北京:人民邮电出版社,2013:184-239.
  • 6Wikipedia. Thomas Vander Wal. Folksonomy. [ EB/OL]. (2013-04-27) [ 2015-12-05 ] https ://en. wikipedia, org/ wiki/Thomas_Vander_Wal#Folksonomy.
  • 7Hotho A, Jiischke R, Schmitz C, et al. Information Retrieval in Folksonomies: Search and Ranking [ J ]. Semantic Web Research & Applications, 2006, 4011: 411-426.
  • 8Surabhi D, Thorat C. Namrata Mahender. SOCIAL TAGGING IN SOCIAL MEDIA - A REVIEW. [ J ]. International Journal of Research in Computer Applications & Robotics, 2015, 3 (3) : 130-137.
  • 9Daniela G, Alejro C. Folksonomy-Based Recommender Systems: A State-of-the-Art Review [ J ]. International Journal of Intelligent Systems, 2015.
  • 10Arekar T, Sonar M R S, Uke N J. A Survey on Recommendation System [ J ]. International Journal of Innovative Research in Advanced Engineering, ISSN: 2349-2163, Volume 2 Issue, January 2015.

共引文献61

同被引文献19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部