期刊文献+

Singular Values of Sums of Positive Semidefinite Matrices

原文传递
导出
摘要 For positive real numbers a,b,a+b≤max{a+b1/2 a1/2,b+a1/2b1/2}.In this note,we generalize this fact to matrices by proving that for positive semidefinite matrices A and B of order n,for any c∈[-1,1]and j=1,2,…,n,sj(A+B)≤sj((A⊕B)+φc(A,B))≤sj(A+|B1/2A1/2|)⊕(B+|A1/2B1/2|),where sj(X)denotes the j-th largest singular value of X andφc(A,B):=1/2((1+c)|B1/2A1/2|(1-c)A1/2B1/2(1-c)B1/2A1/2(1+c)|A1/2B1/2|).This result sharpens some known result.Meanwhile,some related results are established.
出处 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2020年第4期307-310,共4页 武汉大学学报(自然科学英文版)
基金 Supported by the Natural Science Foundation of Anhui Province(1708085QA05) the Natural Science Foundation of Anhui Higher Education Institutions of China(KJ2019A0588,KJ2020ZD008)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部