期刊文献+

现场勘验刀具图像特征描述与识别

Characteristics description and recognition of knife images in crime scene investigation
下载PDF
导出
摘要 针对人工录入现勘刀具图像耗时耗力、准确率低的问题,提出一种基于目标形状特征的现勘刀具图像识别算法。在分析现勘刀具图像特色数据基础上,总结现勘刀具图像的典型内容特性;利用基于结构森林的边缘检测和聚类的方法对目标定位和轮廓提取,再结合包含目标轮廓的最小外接矩形给出刀尖角度的计算方法,并与长宽比、矩形度、圆形度构建识别刀目标的形状特征向量,将该特征向量输入支持向量机建立二分类模型,实现对现勘刀具图像的识别。实验结果表明,该算法性能明显优于其他特征提取算法,且对现勘刀具图像识别准确率达到94.61%,可有效表征刀具图像的内容。 Recording knife images during crime scene investigation is time-consuming,labour-intensive,and sometimes inaccurate due to human error.An effective method for crime scene investigation knife images recognition is proposed in this paper using the shape characteristics.Based on the analysis of the characteristic data of the crime scene investigation knife images,the typical content characteristics of the crime scene investigation image are summarized;the edge detection based on the structure forest and clustering algorithm are used to locate and extract the target,and then combined with the smallest circumscribed rectangle containing the knife contour,the calculation method of the angle of the knife tip is established.The shape feature vector identifying the knife target is constructed with the aspect ratio,rectangularity,circularity and the angle of the knife tip.The feature vector is input to the support vector machine to establish a binary classification model to realize the recognition of the image of crime scene investigation knife image.The method proposed in this paper can achieve the highest recognition accuracy,reaching 94.61%on crime scene investigation knife images.
作者 刘颖 李钊 公衍超 林庆帆 王富平 LIU Ying;LI Zhao;GONG Yanchao;LIM Kengpang;WANG Fuping(School of Communication and Information Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,China;Ministry of Public Security Key Laboratory of Electronic Information Application Technology for Scene Investigation,Xi’an 710121,China;Siliconvision Pte.Ltd,787820,Singapore)
出处 《西安邮电大学学报》 2020年第1期49-55,共7页 Journal of Xi’an University of Posts and Telecommunications
基金 国家自然科学基金项目(61801381) 陕西省国际科技合作计划项目(2018KW-003) 陕西省教育厅专项科研计划项目(18JK0708)。
关键词 犯罪现场勘验 刀具图像识别 形状特征 支持向量机 crime scene investigation knife image recognition shape characteristics support vector machine
  • 相关文献

参考文献6

二级参考文献49

  • 1马红忠.信息化时代刑事侦查中的立体思维[J].武汉公安干部学院学报,2013,27(3):14-17. 被引量:7
  • 2Lei M, van Wyk B J, Qi Y. Online estimation of the approximate posterior Cramer-Rao lower bound for discrete-time nonlinear filtering. IEEE Transactions on Aerospace and Electronic systems, 2011, 47(1):37-57.
  • 3Arasaratnam I, Haykin S. Cubature Kalman filters. IEEE Transactions on Automatic Control, 2009, 54(6):1254-1269.
  • 4Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F:Radar and Signal Processing, 1993, 140(2):107-113.
  • 5Guo D, Wang X D. Quasi-Monte Carlo filtering in nonlinear dynamic systems. IEEE Transactions on Signal Processing, 2006, 54(6):2087-2098.
  • 6Wang X X, Liang Y, Pan Q, Zhao C H. Gaussian filter for nonlinear systems with one-step randomly delayed measurements. Automatica, 2013, 49(4):976-986.
  • 7Arasaratnam I, Haykin S, Elliott R J. Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature. Proceedings of the IEEE, 2007, 95(5):953-977.
  • 8Julier S J, Uhlman J K, Durrant-Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 2000, 45(3):477-482.
  • 9Julier S J, Uhlman J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3):401-422.
  • 10Wu Y X, Hu D W, Wu M P, Hu X P. A numerical-integration perspective on Gaussian filters. IEEE Transactions on Signal Processing, 2006, 54(8):2910-2921.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部