期刊文献+

基于等几何有限元法的功能梯度微板热力耦合屈曲预测 被引量:2

Thermal-mechanical buckling analysis of functionally graded micro plates using isogeometric finite element method
下载PDF
导出
摘要 基于修正偶应力理论和Kirchhoff板理论,建立了功能梯度微板热力耦合屈曲等几何有限元模型。该模型仅包含一个材料尺度参数,能够描述尺度效应现象,且满足修正偶应力理论的高阶连续性要求。基于虚功原理推导了功能梯度微板热力耦合屈曲等几何有限元方程。通过对板的典型算例分析,讨论了材料尺度参数、边长比及梯度指数对板稳定性的影响。结果表明,本文模型预测的屈曲载荷总是大于宏观理论的结果,即捕捉到了尺度效应现象;随着临界屈曲力的增加,临界屈曲热载荷线性减少;此外,边长比和梯度指数也对微板的稳定性产生一定影响。 Based on the modified couple stress theory(MCST)in conjunction with the Kirchhoff plate theory,an isogeometric finite element model for thermal-mechanical buckling analysis of functionally graded(FG)micro plates was presented.This model only had one material length scale parameter,which was able to capture the size effect,and satisfied the requirement of the MCST for high-order continuity.The principle of virtual work was employed to derive isogeometric finite element equations of the thermal-mechanical buckling of FG micro plates.In order to investigate the effects of the material scale parameter,the aspect ratio and the gradient index on the thermal-mechanical stability of FG micro plates,a typical FG micro plates under thermal-mechanical loads was taken as an illustrative example.The results reveal that the critical buckling predicted by the present method is larger than that of the classical one,which means the size effect can be captured;with the increase of the critical mechanical load,the critical thermal load is decreasing linearly.Meanwhile,the aspect radio and the gradient index also have some effects on the stability of micro plates.
作者 邓阳 尹硕辉 赵子衡 DENG Yang;YIN Shuo -hui;ZHAO Zi-heng(School of Mechanical Engineering,Xiangtan University,Xiangtan 411105,China)
出处 《计算力学学报》 EI CAS CSCD 北大核心 2020年第5期553-559,共7页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(11802261,11802258)资助项目.
关键词 热力耦合屈曲 等几何有限元法 功能梯度材料 修正偶应力理论 尺度效应 thermal-mechanical buckling isogeometric finite element method functionally graded material modified couple stress theory size effect
  • 相关文献

参考文献2

二级参考文献3

共引文献8

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部