期刊文献+

基于快速分解正交变换状态估计的电网含坏数据检测与辨识

Detection and Identification of Bad Data in Power Grid Considering Fast Based of Orthogonal Transformation State Estimation
下载PDF
导出
摘要 为解决原有电网含坏数据检测与辨识方法对电网状态估计能力较差导致电网不良数据检测与辨识的精准度较低、适用性较差等问题,引用快速分解正交变换算法,设计考虑快速分解正交变换状态估计的电网含坏数据检测与辨识方法。使用快速分解正交变换算法估计电网状态,采用量测量突变检测法检测电网中的含坏数据。设定相应的检测与辨识平台,实现高精度电网含坏数据的检测与辨识,从而完成基于快速分解正交变换状态估计的电网含坏数据检测与辨识方法的设计。此外,构建算例测试环节,通过与传统方法对比可知,此方法的检测精度更高,可推广应用。 In view of the poor power grid state estimation ability of the original power grid containing bad data detection and identification methods,the detection and identification of bad grid data has low accuracy and poor applicability.The fast decomposition orthogonal transformation algorithm is used to design a method for detecting and identifying bad data in the power grid considering the fast decomposition orthogonal transformation state estimation.The fast decomposition orthogonal transformation algorithm is used to complete the power grid state estimation,and the quantitative measurement mutation detection method is used to detect bad data in the power grid.Set up the corresponding detection and identification platform to achieve high-precision detection and identification of bad data in the power grid.So far,the design of the detection and identification method of power grid containing bad data considering fast decomposition of orthogonal transformation state estimation is completed.Construct the test link of the calculation example.By comparing with the traditional method,it can be seen that the detection accuracy of this method is higher,and this method should be popularized and applied.
作者 朱赵桓 王安雨 徐天 ZHU Zhao-huan;WANG An-yu;XU Tian(Nanjing Institute of Technology,Nanjing 210000,China)
机构地区 南京工程学院
出处 《通信电源技术》 2020年第14期46-47,52,共3页 Telecom Power Technology
基金 南京工程学院大学生科技创新基金2020年“挑战杯”支撑项目(TZ20200007) 南京工程学院大学生科技创新项目号(TB202004068)。
关键词 状态估计 不良数据 检测与辨识 正交变换 state estimation bad data detection and identification orthogonal transform
  • 相关文献

参考文献5

二级参考文献45

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部