期刊文献+

基于生成对抗网络的宫颈细胞图像数据增强 被引量:10

Image Data Augmentation of Cervical Cells Based on Generative Adversarial Networks
下载PDF
导出
摘要 为了在数据集过小时更好的训练卷积神经网络,提出一种方法通过训练生成对抗网络(GAN)生成新的样本进行图像数据增强。扩充后的数据集应用于训练图像分类模型,得到了不错的效果。针对Herlev宫颈细胞数据集的二分类问题,首先使用原始训练集训练GAN,生成了大量高质量的高分辨率细胞图像,将每类训练集扩充到24000例。然后使用扩充后的训练集进行分类网络训练,在Resnet迁移学习的验证集准确率高达97%,高于仿射变换扩充的数据集的训练结果93%,可见研究结果可以有效地实现图像的数据增强。研究结果也可用于其他领域的图像数据增强。 In order to solve the problem of too small dataset when training convolutional neural networks,a small dataset training generative adversarial networks(GAN)were used to generate new samples for data augmentation.The expanded data set was applied to the training image classification model and had a good effect.For the dichotomy problem of Herlev datasets,the original training set was used to train GAN,generating a large number of high-quality high-resolution cell images,and expanding each training set up to 24000 cases.Then the expanded training set was used for classification network training.The accuracy of the validation set in Resnet migration learning was 97%,which was higher than the accuracy of dataset of affine transformation expansion of 93%,indicating the effectiveness of our approach for image data augmentation.This method can also be used for image data augmentation in other fields.
作者 林志鹏 曾立波 吴琼水 LIN Zhi-peng;ZENG Li-bo;WU Qiong-shui(Electronic Information School,Wuhan University,Wuhan 430072,China)
出处 《科学技术与工程》 北大核心 2020年第28期11672-11677,共6页 Science Technology and Engineering
基金 国家科技支撑计划(2011BAF02B00)。
关键词 生成对抗网络 宫颈细胞 数据增强 图像分类 generative adversarial networks cervical cells data augmentation image classification
  • 相关文献

参考文献5

二级参考文献26

共引文献86

同被引文献94

引证文献10

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部