期刊文献+

结合卷积神经网络与哈希编码的图像检索方法 被引量:4

Image retrieval method combining convolution neural network and Hash coding
下载PDF
导出
摘要 为了提高图像检索的精度与速度,提出一种卷积神经网络与哈希方法结合的图像检索算法。该方法在深度残差网络的基础上构建了一个网络模型,将随机选取成对的图像(相似/不相似)作为训练输入,使用曼哈顿距离作为损失函数,并添加了一个二值约束正则项,促使训练好的网络输出为类二值码,再将类二值码阈值化为二值码,最后用于图像检索。在Caltech256数据集和MNIST数据集上的实验结果显示,文中方法的检索性能优于其他现有方法。 In order to improve the precision and speed of image retrieval,an image retrieval algorithm combining convolutional neural network and Hash method is proposed in this paper.On the basis of the depth residual network,a network model is built with the proposed method,which can select pairs of images(similar/dissimilar)randomly as a training input.The Manhattan distance is taken as a loss function,and a binary constraint regularization is added to prompt the trained network output as approximate binary code.Then the approximate binary code threshold is converted into binary code for image retrieval.The results of experimental on Caltech256 data set and MNIST data set show that the retrieval performance of this method is better than other existing methods.
作者 吴振宇 邱奕敏 周纤 WU Zhenyu;QIU Yimin;ZHOU Qian(School of Information Science and Engineering,Wuhan University of Science and Technology,Wuhan 430081,China)
出处 《现代电子技术》 北大核心 2020年第21期21-26,共6页 Modern Electronics Technique
基金 国家自然科学基金面上项目(61373109) 湖北省自然科学基金资助项目(2018CFB346) 湖北省自然科学基金资助项目(2019CFB138)。
关键词 图像检索 卷积神经网络 哈希编码 网络模型 图片对生成 网络训练 image retrieval convolutional neural network Hash coding network model image pair generation network training
  • 相关文献

参考文献4

二级参考文献30

  • 1方壮.一种迭代有序k最邻近距离实现数字图像特征点匹配的算法[J].湖北民族学院学报(自然科学版),2013,31(1):36-37. 被引量:3
  • 2Martin Langkvist,Lars Karlsson,Amy Loutfi.A review of unsupervised feature learning and deep learning for time-series modeling[J].Pattern Recognition Letter,2014,42(6):11-24.
  • 3Yelin Kim,Honglak Lee,Emily Mower Provost.Deep learning for robust feature generation audiovisual emotion recognition[J].IEEE Transactions on Networks,2013,13(6):978-984.
  • 4Hinton G E,Srivastava N,Krizhevsky A,et al.Improving neural networks by preventing co-adaptation of feature detectors[J].IEEE Transactions on Networks,2013,13(2):266-269.
  • 5Geoffrey Hinton.A fast learning algorithm for deep belief nets[J].Neural Compute,2006,18(7):1527-1554.
  • 6Atsalakis G S,Valavanis K P.Surveyingstock market forecasting techniques-part II:softcomputing methods[J].Expert Systems with Applications,2009,36(2):5932-5941.
  • 7Lee H,Largman Y,Pham P,et al,Unsupervised feature learning for audio classification using convolutional deep belief network[J].Advertisement Neural Information Process,2009,22(2):1096-1104.
  • 8KHERFI M L, ZIOU D. Relevance feedback for CBIR: a new approach based on probabilistic feature weighting with positive and negative examples [J]. IEEE transactions on image processing,2006, 15(4): 1017-1030.
  • 9TRAINA A J M, MARQUES J. Fighting the semantic gap on CBIR systems through new relevance feedback techniques [C]// Proceedings of 2011 the 21th IEEE International Symposium on Computer-Based Medical Systems. [S.1.]: IEEE, 2006: 881-886.
  • 10周资云.基于内容的图像检索系统研发与应用[J].华章,2012(29):22.

共引文献1761

同被引文献32

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部