摘要
以滑坡为研究对象,结合机器学习中基于用户的协同过滤推荐算法,通过对已发生的滑坡及其治理措施进行数据分析和特征提取,建立预测模型。对于一个新发生未治理的滑坡,计算其与现有所有已治理滑坡的相似度,统计与目标滑坡相似度最高的前K个滑坡的治理措施,最快地给出治理工程方案建议,能够有效地降低滑坡的破坏性并减少损失。
This article takes landslide as research object,combining user-based collaborative filtering recommendation algorithms in machine learning,build predictive models based on data analysis and feature extraction of existing landslides and their governance measures.For a new landslide,calculate the similarity with all existing managed landslides,statistics of the top K landslide governance measures with the highest similarity to the target landslide,and give the fastest suggestion for the treatment project which can effectively reduce the destructiveness of landslides and reduce losses.
作者
毛宇昆
李展
刘强
蒋雨欣
许丁友
何静
刘乾坤
MAO Yukun;LI Zhan;LIU Qiang;JIANG Yuxin;XU Dingyou;HE Jing;LIU Qiankun(School of Resources and Environment,University of Electronic Science and Technology of China,Chengdu 611731,China;Chengdu Research Institute of Geotechnical Investigation and Surveying,Chengdu 611731,China;School of Economics,Hefei University of Technology,Hefei 230009,China;Xi′an Technical Division of Surveying&Mapping,Xi′an 710054,China)
出处
《测绘与空间地理信息》
2020年第10期24-27,共4页
Geomatics & Spatial Information Technology
基金
国家自然基金(61401077)
博士后基金(2015M580784)
省科技厅基金(2019YFG0099)资助。
关键词
滑坡
治理工程
协同过滤
推荐系统
landslide
governance project
collaborative filtering
recommended system