期刊文献+

基于统计的物联网分布式拒绝服务攻击检测 被引量:6

Statistical based distributed denial of service attack detection research in internet of things
原文传递
导出
摘要 针对物联网大规模分布式拒绝服务攻击检测难题,基于Docker虚拟化容器技术搭建了物联网流量仿真平台,通过模拟Mirai僵尸网络和执行命令产生4种不同的攻击流量。人工执行与物联网实验箱自动产生正常流量。对原始流量进行统计分析生成包级和秒级两种不同等级的物联网流量数据集。提出了分段HURST指数、滑动窗口熵和滑动窗口置信区间3种统计指标和分析方法,并制定了攻击检测规则。实验结果表明:基于滑动窗口均值置信区间的异常流量检测方法可达72.11%的准确率。 To solve the problem of large-scale Distributed Denial of Service(DDoS)attack detection in Internet of Things(IoT)simulation environment,the Docker virtualized container technology is used to construct the IoT traffic simulation platform. First,four different types of attack traffic are generated by simulating Mirai botnet and executing commands,and normal traffic is generated by manual click and IoT experiment box auto execution. Then,statistical analysis is carried out on the original traffic to generate two different levels of datasets:packet-level and second-level. Third,three statistical analysis methods and indicators are proposed,including segmented HURST exponent,sliding-window based entropy and sliding-window based confidence interval. Finally,the DDoS attack traffic detection rules are generated by the training dataset. The experimental results show that the sliding-window based confidence interval abnormal traffic detection method can achieve an accuracy of 72.11%.
作者 陈红松 陈京九 CHEN Hong-song;CHEN Jing-jiu(School of Computer and Communication Engineering,University of Science and Technology Beijing,Beijing 100083,China)
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第5期1894-1904,共11页 Journal of Jilin University:Engineering and Technology Edition
基金 国家社会科学基金项目(18BGJ071)。
关键词 统计分析 异常流量检测 分布式拒绝服务 攻击模拟 物联网仿真 statistical analysis abnormal traffic detection distributed denial of service attack simulation internet of things simulation
  • 相关文献

参考文献1

二级参考文献13

  • 1Leland W E,Taqqu M S,Willinger W,et al.On the self-similar nature of Ethernet traffic(extended version)[J].IEEE/ACM Trans on Networking,1994,2(1):1-15.
  • 2Beran J.Sherman R,Traqqu M S,et al.Long range dependence in variable bit rate video traffic[J].IEEE Trans on Communication,1995,43 (2/3/4):1566-1579.
  • 3Paxson V,Floyd S.Wide area traffic:the failure of poisson modeling[C]//Proc ACM Sigcomm'94,1994:257-268.
  • 4Garren M W,Willinger W.Analysis,modeling and generation of self-similar VBR video traffic[C]//Proc ACM Sigcomm'94,1994:269-280.
  • 5Addie R.Fractal traffic:measurements,modeling and performance evaluation[C]//Proc of INFOCOM'95,Boston,MA,1995:977-984.
  • 6Crovella M E,Bestavros A Self-similarity in World Wide Web traffic-evidence and possible cause[C]//Proceedings of ACM Sigmetrics'96,1996:160-169.
  • 7Willinger W,Taqqu M S,Sherman R,et al.Self-similarity through high-variability:statistical analysis of Ethernet LAN traffic at the source level[J].IEEE/ACM Transactions on Networking,1997,5(1)71-86.
  • 8Veres A,Boda M.The chaotic nature of TCP congestion control[C]//Proceedings of the IEEE Infocom'2000,2000.
  • 9Tsybakov B,Georganas N D.On self-similar traffic in ATM queues:definitions,overflow probability bound,and cell delay distribution[J].IEEE/ACM Trans on Networking,1997,5(3):397-408.
  • 10Garrett M.Contribution toward real-time service on packet switched networks[D].New York:Columbia University,1993.

共引文献2

同被引文献46

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部